diff options
| -rw-r--r-- | models/attention/control.py | 216 | ||||
| -rw-r--r-- | models/attention/hook.py | 63 | ||||
| -rw-r--r-- | models/attention/structured.py | 145 | ||||
| -rw-r--r-- | models/convnext/discriminator.py | 34 | ||||
| -rw-r--r-- | pipelines/stable_diffusion/vlpn_stable_diffusion.py | 1 | ||||
| -rw-r--r-- | train_ti.py | 10 | ||||
| -rw-r--r-- | training/functional.py | 13 |
7 files changed, 0 insertions, 482 deletions
diff --git a/models/attention/control.py b/models/attention/control.py deleted file mode 100644 index ec378c4..0000000 --- a/models/attention/control.py +++ /dev/null | |||
| @@ -1,216 +0,0 @@ | |||
| 1 | import torch | ||
| 2 | import abc | ||
| 3 | |||
| 4 | |||
| 5 | class AttentionControl(abc.ABC): | ||
| 6 | def step_callback(self, x_t): | ||
| 7 | return x_t | ||
| 8 | |||
| 9 | def between_steps(self): | ||
| 10 | return | ||
| 11 | |||
| 12 | @property | ||
| 13 | def num_uncond_att_layers(self): | ||
| 14 | return self.num_att_layers if LOW_RESOURCE else 0 | ||
| 15 | |||
| 16 | @abc.abstractmethod | ||
| 17 | def forward(self, attn, is_cross: bool, place_in_unet: str): | ||
| 18 | raise NotImplementedError | ||
| 19 | |||
| 20 | def __call__(self, attn, is_cross: bool, place_in_unet: str): | ||
| 21 | if self.cur_att_layer >= self.num_uncond_att_layers: | ||
| 22 | if LOW_RESOURCE: | ||
| 23 | attn = self.forward(attn, is_cross, place_in_unet) | ||
| 24 | else: | ||
| 25 | h = attn.shape[0] | ||
| 26 | attn[h // 2 :] = self.forward(attn[h // 2 :], is_cross, place_in_unet) | ||
| 27 | self.cur_att_layer += 1 | ||
| 28 | if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: | ||
| 29 | self.cur_att_layer = 0 | ||
| 30 | self.cur_step += 1 | ||
| 31 | self.between_steps() | ||
| 32 | return attn | ||
| 33 | |||
| 34 | def reset(self): | ||
| 35 | self.cur_step = 0 | ||
| 36 | self.cur_att_layer = 0 | ||
| 37 | |||
| 38 | def __init__(self): | ||
| 39 | self.cur_step = 0 | ||
| 40 | self.num_att_layers = -1 | ||
| 41 | self.cur_att_layer = 0 | ||
| 42 | |||
| 43 | |||
| 44 | class EmptyControl(AttentionControl): | ||
| 45 | def forward(self, attn, is_cross: bool, place_in_unet: str): | ||
| 46 | return attn | ||
| 47 | |||
| 48 | |||
| 49 | class AttentionStore(AttentionControl): | ||
| 50 | @staticmethod | ||
| 51 | def get_empty_store(): | ||
| 52 | return { | ||
| 53 | "down_cross": [], | ||
| 54 | "mid_cross": [], | ||
| 55 | "up_cross": [], | ||
| 56 | "down_self": [], | ||
| 57 | "mid_self": [], | ||
| 58 | "up_self": [], | ||
| 59 | } | ||
| 60 | |||
| 61 | def forward(self, attn, is_cross: bool, place_in_unet: str): | ||
| 62 | key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" | ||
| 63 | if attn.shape[1] <= 32**2: # avoid memory overhead | ||
| 64 | self.step_store[key].append(attn) | ||
| 65 | return attn | ||
| 66 | |||
| 67 | def between_steps(self): | ||
| 68 | if len(self.attention_store) == 0: | ||
| 69 | self.attention_store = self.step_store | ||
| 70 | else: | ||
| 71 | for key in self.attention_store: | ||
| 72 | for i in range(len(self.attention_store[key])): | ||
| 73 | self.attention_store[key][i] += self.step_store[key][i] | ||
| 74 | self.step_store = self.get_empty_store() | ||
| 75 | |||
| 76 | def get_average_attention(self): | ||
| 77 | average_attention = { | ||
| 78 | key: [item / self.cur_step for item in self.attention_store[key]] | ||
| 79 | for key in self.attention_store | ||
| 80 | } | ||
| 81 | return average_attention | ||
| 82 | |||
| 83 | def reset(self): | ||
| 84 | super(AttentionStore, self).reset() | ||
| 85 | self.step_store = self.get_empty_store() | ||
| 86 | self.attention_store = {} | ||
| 87 | |||
| 88 | def __init__(self): | ||
| 89 | super(AttentionStore, self).__init__() | ||
| 90 | self.step_store = self.get_empty_store() | ||
| 91 | self.attention_store = {} | ||
| 92 | |||
| 93 | |||
| 94 | class AttentionControlEdit(AttentionStore, abc.ABC): | ||
| 95 | def step_callback(self, x_t): | ||
| 96 | if self.local_blend is not None: | ||
| 97 | x_t = self.local_blend(x_t, self.attention_store) | ||
| 98 | return x_t | ||
| 99 | |||
| 100 | def replace_self_attention(self, attn_base, att_replace): | ||
| 101 | if att_replace.shape[2] <= 16**2: | ||
| 102 | return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) | ||
| 103 | else: | ||
| 104 | return att_replace | ||
| 105 | |||
| 106 | @abc.abstractmethod | ||
| 107 | def replace_cross_attention(self, attn_base, att_replace): | ||
| 108 | raise NotImplementedError | ||
| 109 | |||
| 110 | def forward(self, attn, is_cross: bool, place_in_unet: str): | ||
| 111 | super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) | ||
| 112 | if is_cross or ( | ||
| 113 | self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1] | ||
| 114 | ): | ||
| 115 | h = attn.shape[0] // (self.batch_size) | ||
| 116 | attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) | ||
| 117 | attn_base, attn_repalce = attn[0], attn[1:] | ||
| 118 | if is_cross: | ||
| 119 | alpha_words = self.cross_replace_alpha[self.cur_step] | ||
| 120 | attn_repalce_new = ( | ||
| 121 | self.replace_cross_attention(attn_base, attn_repalce) * alpha_words | ||
| 122 | + (1 - alpha_words) * attn_repalce | ||
| 123 | ) | ||
| 124 | attn[1:] = attn_repalce_new | ||
| 125 | else: | ||
| 126 | attn[1:] = self.replace_self_attention(attn_base, attn_repalce) | ||
| 127 | attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) | ||
| 128 | return attn | ||
| 129 | |||
| 130 | def __init__( | ||
| 131 | self, | ||
| 132 | prompts, | ||
| 133 | num_steps: int, | ||
| 134 | cross_replace_steps: Union[ | ||
| 135 | float, Tuple[float, float], Dict[str, Tuple[float, float]] | ||
| 136 | ], | ||
| 137 | self_replace_steps: Union[float, Tuple[float, float]], | ||
| 138 | local_blend: Optional[LocalBlend], | ||
| 139 | ): | ||
| 140 | super(AttentionControlEdit, self).__init__() | ||
| 141 | self.batch_size = len(prompts) | ||
| 142 | self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha( | ||
| 143 | prompts, num_steps, cross_replace_steps, tokenizer | ||
| 144 | ).to(device) | ||
| 145 | if type(self_replace_steps) is float: | ||
| 146 | self_replace_steps = 0, self_replace_steps | ||
| 147 | self.num_self_replace = int(num_steps * self_replace_steps[0]), int( | ||
| 148 | num_steps * self_replace_steps[1] | ||
| 149 | ) | ||
| 150 | self.local_blend = local_blend | ||
| 151 | |||
| 152 | |||
| 153 | class AttentionReplace(AttentionControlEdit): | ||
| 154 | def replace_cross_attention(self, attn_base, att_replace): | ||
| 155 | return torch.einsum("hpw,bwn->bhpn", attn_base, self.mapper) | ||
| 156 | |||
| 157 | def __init__( | ||
| 158 | self, | ||
| 159 | prompts, | ||
| 160 | num_steps: int, | ||
| 161 | cross_replace_steps: float, | ||
| 162 | self_replace_steps: float, | ||
| 163 | local_blend: Optional[LocalBlend] = None, | ||
| 164 | ): | ||
| 165 | super(AttentionReplace, self).__init__( | ||
| 166 | prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend | ||
| 167 | ) | ||
| 168 | self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device) | ||
| 169 | |||
| 170 | |||
| 171 | class AttentionRefine(AttentionControlEdit): | ||
| 172 | def replace_cross_attention(self, attn_base, att_replace): | ||
| 173 | attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) | ||
| 174 | attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) | ||
| 175 | return attn_replace | ||
| 176 | |||
| 177 | def __init__( | ||
| 178 | self, | ||
| 179 | prompts, | ||
| 180 | num_steps: int, | ||
| 181 | cross_replace_steps: float, | ||
| 182 | self_replace_steps: float, | ||
| 183 | local_blend: Optional[LocalBlend] = None, | ||
| 184 | ): | ||
| 185 | super(AttentionRefine, self).__init__( | ||
| 186 | prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend | ||
| 187 | ) | ||
| 188 | self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer) | ||
| 189 | self.mapper, alphas = self.mapper.to(device), alphas.to(device) | ||
| 190 | self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) | ||
| 191 | |||
| 192 | |||
| 193 | class AttentionReweight(AttentionControlEdit): | ||
| 194 | def replace_cross_attention(self, attn_base, att_replace): | ||
| 195 | if self.prev_controller is not None: | ||
| 196 | attn_base = self.prev_controller.replace_cross_attention( | ||
| 197 | attn_base, att_replace | ||
| 198 | ) | ||
| 199 | attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] | ||
| 200 | return attn_replace | ||
| 201 | |||
| 202 | def __init__( | ||
| 203 | self, | ||
| 204 | prompts, | ||
| 205 | num_steps: int, | ||
| 206 | cross_replace_steps: float, | ||
| 207 | self_replace_steps: float, | ||
| 208 | equalizer, | ||
| 209 | local_blend: Optional[LocalBlend] = None, | ||
| 210 | controller: Optional[AttentionControlEdit] = None, | ||
| 211 | ): | ||
| 212 | super(AttentionReweight, self).__init__( | ||
| 213 | prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend | ||
| 214 | ) | ||
| 215 | self.equalizer = equalizer.to(device) | ||
| 216 | self.prev_controller = controller | ||
diff --git a/models/attention/hook.py b/models/attention/hook.py deleted file mode 100644 index 6b5fb68..0000000 --- a/models/attention/hook.py +++ /dev/null | |||
| @@ -1,63 +0,0 @@ | |||
| 1 | import torch | ||
| 2 | |||
| 3 | |||
| 4 | try: | ||
| 5 | import xformers.ops | ||
| 6 | |||
| 7 | xformers._is_functorch_available = True | ||
| 8 | MEM_EFFICIENT_ATTN = True | ||
| 9 | except ImportError: | ||
| 10 | print("[!] Not using xformers memory efficient attention.") | ||
| 11 | MEM_EFFICIENT_ATTN = False | ||
| 12 | |||
| 13 | |||
| 14 | def register_attention_control(model, controller): | ||
| 15 | def ca_forward(self, place_in_unet): | ||
| 16 | def forward(x, context=None, mask=None): | ||
| 17 | batch_size, sequence_length, dim = x.shape | ||
| 18 | h = self.heads | ||
| 19 | q = self.to_q(x) | ||
| 20 | is_cross = context is not None | ||
| 21 | context = context if is_cross else x | ||
| 22 | k = self.to_k(context) | ||
| 23 | v = self.to_v(context) | ||
| 24 | q = self.reshape_heads_to_batch_dim(q) | ||
| 25 | k = self.reshape_heads_to_batch_dim(k) | ||
| 26 | v = self.reshape_heads_to_batch_dim(v) | ||
| 27 | |||
| 28 | sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale | ||
| 29 | |||
| 30 | if mask is not None: | ||
| 31 | mask = mask.reshape(batch_size, -1) | ||
| 32 | max_neg_value = -torch.finfo(sim.dtype).max | ||
| 33 | mask = mask[:, None, :].repeat(h, 1, 1) | ||
| 34 | sim.masked_fill_(~mask, max_neg_value) | ||
| 35 | |||
| 36 | # attention, what we cannot get enough of | ||
| 37 | attn = sim.softmax(dim=-1) | ||
| 38 | attn = controller(attn, is_cross, place_in_unet) | ||
| 39 | out = torch.einsum("b i j, b j d -> b i d", attn, v) | ||
| 40 | out = self.reshape_batch_dim_to_heads(out) | ||
| 41 | return self.to_out(out) | ||
| 42 | |||
| 43 | return forward | ||
| 44 | |||
| 45 | def register_recr(net_, count, place_in_unet): | ||
| 46 | if net_.__class__.__name__ == "CrossAttention": | ||
| 47 | net_.forward = ca_forward(net_, place_in_unet) | ||
| 48 | return count + 1 | ||
| 49 | elif hasattr(net_, "children"): | ||
| 50 | for net__ in net_.children(): | ||
| 51 | count = register_recr(net__, count, place_in_unet) | ||
| 52 | return count | ||
| 53 | |||
| 54 | cross_att_count = 0 | ||
| 55 | sub_nets = model.unet.named_children() | ||
| 56 | for net in sub_nets: | ||
| 57 | if "down" in net[0]: | ||
| 58 | cross_att_count += register_recr(net[1], 0, "down") | ||
| 59 | elif "up" in net[0]: | ||
| 60 | cross_att_count += register_recr(net[1], 0, "up") | ||
| 61 | elif "mid" in net[0]: | ||
| 62 | cross_att_count += register_recr(net[1], 0, "mid") | ||
| 63 | controller.num_att_layers = cross_att_count | ||
diff --git a/models/attention/structured.py b/models/attention/structured.py deleted file mode 100644 index 5bbbc06..0000000 --- a/models/attention/structured.py +++ /dev/null | |||
| @@ -1,145 +0,0 @@ | |||
| 1 | import torch | ||
| 2 | |||
| 3 | from .control import AttentionControl | ||
| 4 | |||
| 5 | |||
| 6 | class StructuredAttentionControl(AttentionControl): | ||
| 7 | def forward(self, attn, is_cross: bool, place_in_unet: str): | ||
| 8 | return attn | ||
| 9 | |||
| 10 | def forward(self, x, context=None, mask=None): | ||
| 11 | h = self.heads | ||
| 12 | |||
| 13 | q = self.to_q(x) | ||
| 14 | |||
| 15 | if isinstance(context, list): | ||
| 16 | if self.struct_attn: | ||
| 17 | out = self.struct_qkv(q, context, mask) | ||
| 18 | else: | ||
| 19 | context = torch.cat( | ||
| 20 | [context[0], context[1]["k"][0]], dim=0 | ||
| 21 | ) # use key tensor for context | ||
| 22 | out = self.normal_qkv(q, context, mask) | ||
| 23 | else: | ||
| 24 | context = default(context, x) | ||
| 25 | out = self.normal_qkv(q, context, mask) | ||
| 26 | |||
| 27 | return self.to_out(out) | ||
| 28 | |||
| 29 | def struct_qkv(self, q, context, mask): | ||
| 30 | """ | ||
| 31 | context: list of [uc, list of conditional context] | ||
| 32 | """ | ||
| 33 | uc_context = context[0] | ||
| 34 | context_k, context_v = context[1]["k"], context[1]["v"] | ||
| 35 | |||
| 36 | if isinstance(context_k, list) and isinstance(context_v, list): | ||
| 37 | out = self.multi_qkv(q, uc_context, context_k, context_v, mask) | ||
| 38 | elif isinstance(context_k, torch.Tensor) and isinstance( | ||
| 39 | context_v, torch.Tensor | ||
| 40 | ): | ||
| 41 | out = self.heterogeous_qkv(q, uc_context, context_k, context_v, mask) | ||
| 42 | else: | ||
| 43 | raise NotImplementedError | ||
| 44 | |||
| 45 | return out | ||
| 46 | |||
| 47 | def multi_qkv(self, q, uc_context, context_k, context_v, mask): | ||
| 48 | h = self.heads | ||
| 49 | |||
| 50 | assert uc_context.size(0) == context_k[0].size(0) == context_v[0].size(0) | ||
| 51 | true_bs = uc_context.size(0) * h | ||
| 52 | |||
| 53 | k_uc, v_uc = self.get_kv(uc_context) | ||
| 54 | k_c = [self.to_k(c_k) for c_k in context_k] | ||
| 55 | v_c = [self.to_v(c_v) for c_v in context_v] | ||
| 56 | |||
| 57 | q = rearrange(q, "b n (h d) -> (b h) n d", h=h) | ||
| 58 | |||
| 59 | k_uc = rearrange(k_uc, "b n (h d) -> (b h) n d", h=h) | ||
| 60 | v_uc = rearrange(v_uc, "b n (h d) -> (b h) n d", h=h) | ||
| 61 | |||
| 62 | k_c = [ | ||
| 63 | rearrange(k, "b n (h d) -> (b h) n d", h=h) for k in k_c | ||
| 64 | ] # NOTE: modification point | ||
| 65 | v_c = [rearrange(v, "b n (h d) -> (b h) n d", h=h) for v in v_c] | ||
| 66 | |||
| 67 | # get composition | ||
| 68 | sim_uc = einsum("b i d, b j d -> b i j", q[:true_bs], k_uc) * self.scale | ||
| 69 | sim_c = [ | ||
| 70 | einsum("b i d, b j d -> b i j", q[true_bs:], k) * self.scale for k in k_c | ||
| 71 | ] | ||
| 72 | |||
| 73 | attn_uc = sim_uc.softmax(dim=-1) | ||
| 74 | attn_c = [sim.softmax(dim=-1) for sim in sim_c] | ||
| 75 | |||
| 76 | # get uc output | ||
| 77 | out_uc = einsum("b i j, b j d -> b i d", attn_uc, v_uc) | ||
| 78 | |||
| 79 | # get c output | ||
| 80 | if len(v_c) == 1: | ||
| 81 | out_c_collect = [] | ||
| 82 | for attn in attn_c: | ||
| 83 | for v in v_c: | ||
| 84 | out_c_collect.append(einsum("b i j, b j d -> b i d", attn, v)) | ||
| 85 | out_c = sum(out_c_collect) / len(out_c_collect) | ||
| 86 | else: | ||
| 87 | out_c = sum( | ||
| 88 | [ | ||
| 89 | einsum("b i j, b j d -> b i d", attn, v) | ||
| 90 | for attn, v in zip(attn_c, v_c) | ||
| 91 | ] | ||
| 92 | ) / len(v_c) | ||
| 93 | |||
| 94 | out = torch.cat([out_uc, out_c], dim=0) | ||
| 95 | out = rearrange(out, "(b h) n d -> b n (h d)", h=h) | ||
| 96 | |||
| 97 | return out | ||
| 98 | |||
| 99 | def normal_qkv(self, q, context, mask): | ||
| 100 | h = self.heads | ||
| 101 | k = self.to_k(context) | ||
| 102 | v = self.to_v(context) | ||
| 103 | |||
| 104 | q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) | ||
| 105 | |||
| 106 | sim = einsum("b i d, b j d -> b i j", q, k) * self.scale | ||
| 107 | |||
| 108 | if exists(mask): | ||
| 109 | mask = rearrange(mask, "b ... -> b (...)") | ||
| 110 | max_neg_value = -torch.finfo(sim.dtype).max | ||
| 111 | mask = repeat(mask, "b j -> (b h) () j", h=h) | ||
| 112 | sim.masked_fill_(~mask, max_neg_value) | ||
| 113 | |||
| 114 | # attention, what we cannot get enough of | ||
| 115 | attn = sim.softmax(dim=-1) | ||
| 116 | |||
| 117 | out = einsum("b i j, b j d -> b i d", attn, v) | ||
| 118 | out = rearrange(out, "(b h) n d -> b n (h d)", h=h) | ||
| 119 | |||
| 120 | return out | ||
| 121 | |||
| 122 | def heterogeous_qkv(self, q, uc_context, context_k, context_v, mask): | ||
| 123 | h = self.heads | ||
| 124 | k = self.to_k(torch.cat([uc_context, context_k], dim=0)) | ||
| 125 | v = self.to_v(torch.cat([uc_context, context_v], dim=0)) | ||
| 126 | |||
| 127 | q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) | ||
| 128 | |||
| 129 | sim = einsum("b i d, b j d -> b i j", q, k) * self.scale | ||
| 130 | |||
| 131 | if exists(mask): | ||
| 132 | mask = rearrange(mask, "b ... -> b (...)") | ||
| 133 | max_neg_value = -torch.finfo(sim.dtype).max | ||
| 134 | mask = repeat(mask, "b j -> (b h) () j", h=h) | ||
| 135 | sim.masked_fill_(~mask, max_neg_value) | ||
| 136 | |||
| 137 | # attention, what we cannot get enough of | ||
| 138 | attn = sim.softmax(dim=-1) | ||
| 139 | |||
| 140 | out = einsum("b i j, b j d -> b i d", attn, v) | ||
| 141 | out = rearrange(out, "(b h) n d -> b n (h d)", h=h) | ||
| 142 | return out | ||
| 143 | |||
| 144 | def get_kv(self, context): | ||
| 145 | return self.to_k(context), self.to_v(context) | ||
diff --git a/models/convnext/discriminator.py b/models/convnext/discriminator.py deleted file mode 100644 index 5798bcf..0000000 --- a/models/convnext/discriminator.py +++ /dev/null | |||
| @@ -1,34 +0,0 @@ | |||
| 1 | import torch | ||
| 2 | from timm.models import ConvNeXt | ||
| 3 | from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | ||
| 4 | |||
| 5 | from torch.nn import functional as F | ||
| 6 | |||
| 7 | |||
| 8 | class ConvNeXtDiscriminator: | ||
| 9 | def __init__(self, model: ConvNeXt, input_size: int) -> None: | ||
| 10 | self.net = model | ||
| 11 | |||
| 12 | self.input_size = input_size | ||
| 13 | |||
| 14 | self.img_mean = torch.tensor(IMAGENET_DEFAULT_MEAN).view(1, -1, 1, 1) | ||
| 15 | self.img_std = torch.tensor(IMAGENET_DEFAULT_STD).view(1, -1, 1, 1) | ||
| 16 | |||
| 17 | def get_score(self, img): | ||
| 18 | pred = self.get_all(img) | ||
| 19 | return torch.softmax(pred, dim=-1)[:, 1] | ||
| 20 | |||
| 21 | def get_all(self, img): | ||
| 22 | img_mean = self.img_mean.to(device=img.device, dtype=img.dtype) | ||
| 23 | img_std = self.img_std.to(device=img.device, dtype=img.dtype) | ||
| 24 | |||
| 25 | img = ((img + 1.0) / 2.0).sub(img_mean).div(img_std) | ||
| 26 | |||
| 27 | img = F.interpolate( | ||
| 28 | img, | ||
| 29 | size=(self.input_size, self.input_size), | ||
| 30 | mode="bicubic", | ||
| 31 | align_corners=True, | ||
| 32 | ) | ||
| 33 | pred = self.net(img) | ||
| 34 | return pred | ||
diff --git a/pipelines/stable_diffusion/vlpn_stable_diffusion.py b/pipelines/stable_diffusion/vlpn_stable_diffusion.py index 16b8456..98703d5 100644 --- a/pipelines/stable_diffusion/vlpn_stable_diffusion.py +++ b/pipelines/stable_diffusion/vlpn_stable_diffusion.py | |||
| @@ -28,7 +28,6 @@ from diffusers.utils import logging, randn_tensor | |||
| 28 | from transformers import CLIPTextModel, CLIPTokenizer | 28 | from transformers import CLIPTextModel, CLIPTokenizer |
| 29 | 29 | ||
| 30 | from models.clip.util import unify_input_ids, get_extended_embeddings | 30 | from models.clip.util import unify_input_ids, get_extended_embeddings |
| 31 | from util.noise import perlin_noise | ||
| 32 | 31 | ||
| 33 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name | 32 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name |
| 34 | 33 | ||
diff --git a/train_ti.py b/train_ti.py index da0c03e..7d1ef19 100644 --- a/train_ti.py +++ b/train_ti.py | |||
| @@ -698,16 +698,6 @@ def main(): | |||
| 698 | unet.enable_gradient_checkpointing() | 698 | unet.enable_gradient_checkpointing() |
| 699 | text_encoder.gradient_checkpointing_enable() | 699 | text_encoder.gradient_checkpointing_enable() |
| 700 | 700 | ||
| 701 | # convnext = create_model( | ||
| 702 | # "convnext_tiny", | ||
| 703 | # pretrained=False, | ||
| 704 | # num_classes=3, | ||
| 705 | # drop_path_rate=0.0, | ||
| 706 | # ) | ||
| 707 | # convnext.to(accelerator.device, dtype=weight_dtype) | ||
| 708 | # convnext.requires_grad_(False) | ||
| 709 | # convnext.eval() | ||
| 710 | |||
| 711 | if len(args.alias_tokens) != 0: | 701 | if len(args.alias_tokens) != 0: |
| 712 | alias_placeholder_tokens = args.alias_tokens[::2] | 702 | alias_placeholder_tokens = args.alias_tokens[::2] |
| 713 | alias_initializer_tokens = args.alias_tokens[1::2] | 703 | alias_initializer_tokens = args.alias_tokens[1::2] |
diff --git a/training/functional.py b/training/functional.py index 3c7848f..a3d1f08 100644 --- a/training/functional.py +++ b/training/functional.py | |||
| @@ -29,11 +29,8 @@ from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | |||
| 29 | from models.clip.embeddings import ManagedCLIPTextEmbeddings | 29 | from models.clip.embeddings import ManagedCLIPTextEmbeddings |
| 30 | from models.clip.util import get_extended_embeddings | 30 | from models.clip.util import get_extended_embeddings |
| 31 | from models.clip.tokenizer import MultiCLIPTokenizer | 31 | from models.clip.tokenizer import MultiCLIPTokenizer |
| 32 | from models.convnext.discriminator import ConvNeXtDiscriminator | ||
| 33 | from training.util import AverageMeter | 32 | from training.util import AverageMeter |
| 34 | from training.sampler import ScheduleSampler, LossAwareSampler, UniformSampler | 33 | from training.sampler import ScheduleSampler, LossAwareSampler, UniformSampler |
| 35 | from util.slerp import slerp | ||
| 36 | from util.noise import perlin_noise | ||
| 37 | 34 | ||
| 38 | 35 | ||
| 39 | def const(result=None): | 36 | def const(result=None): |
| @@ -349,7 +346,6 @@ def loss_step( | |||
| 349 | prior_loss_weight: float, | 346 | prior_loss_weight: float, |
| 350 | seed: int, | 347 | seed: int, |
| 351 | input_pertubation: float, | 348 | input_pertubation: float, |
| 352 | disc: Optional[ConvNeXtDiscriminator], | ||
| 353 | min_snr_gamma: int, | 349 | min_snr_gamma: int, |
| 354 | step: int, | 350 | step: int, |
| 355 | batch: dict[str, Any], | 351 | batch: dict[str, Any], |
| @@ -449,13 +445,6 @@ def loss_step( | |||
| 449 | 445 | ||
| 450 | loss = loss.mean([1, 2, 3]) | 446 | loss = loss.mean([1, 2, 3]) |
| 451 | 447 | ||
| 452 | if disc is not None: | ||
| 453 | rec_latent = get_original(noise_scheduler, model_pred, noisy_latents, timesteps) | ||
| 454 | rec_latent = rec_latent / vae.config.scaling_factor | ||
| 455 | rec_latent = rec_latent.to(dtype=vae.dtype) | ||
| 456 | rec = vae.decode(rec_latent, return_dict=False)[0] | ||
| 457 | loss = 1 - disc.get_score(rec) | ||
| 458 | |||
| 459 | if min_snr_gamma != 0: | 448 | if min_snr_gamma != 0: |
| 460 | snr = compute_snr(timesteps, noise_scheduler) | 449 | snr = compute_snr(timesteps, noise_scheduler) |
| 461 | mse_loss_weights = ( | 450 | mse_loss_weights = ( |
| @@ -741,7 +730,6 @@ def train( | |||
| 741 | guidance_scale: float = 0.0, | 730 | guidance_scale: float = 0.0, |
| 742 | prior_loss_weight: float = 1.0, | 731 | prior_loss_weight: float = 1.0, |
| 743 | input_pertubation: float = 0.1, | 732 | input_pertubation: float = 0.1, |
| 744 | disc: Optional[ConvNeXtDiscriminator] = None, | ||
| 745 | schedule_sampler: Optional[ScheduleSampler] = None, | 733 | schedule_sampler: Optional[ScheduleSampler] = None, |
| 746 | min_snr_gamma: int = 5, | 734 | min_snr_gamma: int = 5, |
| 747 | avg_loss: AverageMeter = AverageMeter(), | 735 | avg_loss: AverageMeter = AverageMeter(), |
| @@ -803,7 +791,6 @@ def train( | |||
| 803 | prior_loss_weight, | 791 | prior_loss_weight, |
| 804 | seed, | 792 | seed, |
| 805 | input_pertubation, | 793 | input_pertubation, |
| 806 | disc, | ||
| 807 | min_snr_gamma, | 794 | min_snr_gamma, |
| 808 | ) | 795 | ) |
| 809 | 796 | ||
