diff options
-rw-r--r-- | pipelines/util.py | 9 | ||||
-rw-r--r-- | train_dreambooth.py | 7 | ||||
-rw-r--r-- | train_lora.py | 1040 | ||||
-rw-r--r-- | train_ti.py | 5 | ||||
-rw-r--r-- | training/lora.py | 27 |
5 files changed, 1073 insertions, 15 deletions
diff --git a/pipelines/util.py b/pipelines/util.py deleted file mode 100644 index 661dbee..0000000 --- a/pipelines/util.py +++ /dev/null | |||
@@ -1,9 +0,0 @@ | |||
1 | import torch | ||
2 | |||
3 | |||
4 | def set_use_memory_efficient_attention_xformers(module: torch.nn.Module, valid: bool) -> None: | ||
5 | if hasattr(module, "set_use_memory_efficient_attention_xformers"): | ||
6 | module.set_use_memory_efficient_attention_xformers(valid) | ||
7 | |||
8 | for child in module.children(): | ||
9 | set_use_memory_efficient_attention_xformers(child, valid) | ||
diff --git a/train_dreambooth.py b/train_dreambooth.py index 3eecf9c..0f8fece 100644 --- a/train_dreambooth.py +++ b/train_dreambooth.py | |||
@@ -23,7 +23,6 @@ from slugify import slugify | |||
23 | 23 | ||
24 | from common import load_text_embeddings | 24 | from common import load_text_embeddings |
25 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 25 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
26 | from pipelines.util import set_use_memory_efficient_attention_xformers | ||
27 | from data.csv import CSVDataModule | 26 | from data.csv import CSVDataModule |
28 | from training.optimization import get_one_cycle_schedule | 27 | from training.optimization import get_one_cycle_schedule |
29 | from models.clip.prompt import PromptProcessor | 28 | from models.clip.prompt import PromptProcessor |
@@ -614,8 +613,8 @@ def main(): | |||
614 | args.pretrained_model_name_or_path, subfolder='scheduler') | 613 | args.pretrained_model_name_or_path, subfolder='scheduler') |
615 | 614 | ||
616 | vae.enable_slicing() | 615 | vae.enable_slicing() |
617 | set_use_memory_efficient_attention_xformers(unet, True) | 616 | vae.set_use_memory_efficient_attention_xformers(True) |
618 | set_use_memory_efficient_attention_xformers(vae, True) | 617 | unet.set_use_memory_efficient_attention_xformers(True) |
619 | 618 | ||
620 | if args.gradient_checkpointing: | 619 | if args.gradient_checkpointing: |
621 | unet.enable_gradient_checkpointing() | 620 | unet.enable_gradient_checkpointing() |
@@ -964,6 +963,7 @@ def main(): | |||
964 | # Add noise to the latents according to the noise magnitude at each timestep | 963 | # Add noise to the latents according to the noise magnitude at each timestep |
965 | # (this is the forward diffusion process) | 964 | # (this is the forward diffusion process) |
966 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | 965 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
966 | noisy_latents = noisy_latents.to(dtype=unet.dtype) | ||
967 | 967 | ||
968 | # Get the text embedding for conditioning | 968 | # Get the text embedding for conditioning |
969 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | 969 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) |
@@ -1065,6 +1065,7 @@ def main(): | |||
1065 | timesteps = timesteps.long() | 1065 | timesteps = timesteps.long() |
1066 | 1066 | ||
1067 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | 1067 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
1068 | noisy_latents = noisy_latents.to(dtype=unet.dtype) | ||
1068 | 1069 | ||
1069 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | 1070 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) |
1070 | 1071 | ||
diff --git a/train_lora.py b/train_lora.py new file mode 100644 index 0000000..ffc1d10 --- /dev/null +++ b/train_lora.py | |||
@@ -0,0 +1,1040 @@ | |||
1 | import argparse | ||
2 | import itertools | ||
3 | import math | ||
4 | import datetime | ||
5 | import logging | ||
6 | import json | ||
7 | from pathlib import Path | ||
8 | |||
9 | import torch | ||
10 | import torch.nn.functional as F | ||
11 | import torch.utils.checkpoint | ||
12 | |||
13 | from accelerate import Accelerator | ||
14 | from accelerate.logging import get_logger | ||
15 | from accelerate.utils import LoggerType, set_seed | ||
16 | from diffusers import AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, UNet2DConditionModel | ||
17 | from diffusers.optimization import get_scheduler, get_cosine_with_hard_restarts_schedule_with_warmup | ||
18 | from diffusers.training_utils import EMAModel | ||
19 | from PIL import Image | ||
20 | from tqdm.auto import tqdm | ||
21 | from transformers import CLIPTextModel, CLIPTokenizer | ||
22 | from slugify import slugify | ||
23 | |||
24 | from common import load_text_embeddings | ||
25 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
26 | from data.csv import CSVDataModule | ||
27 | from training.lora import LoraAttention | ||
28 | from training.optimization import get_one_cycle_schedule | ||
29 | from models.clip.prompt import PromptProcessor | ||
30 | |||
31 | logger = get_logger(__name__) | ||
32 | |||
33 | |||
34 | torch.backends.cuda.matmul.allow_tf32 = True | ||
35 | torch.backends.cudnn.benchmark = True | ||
36 | |||
37 | |||
38 | def parse_args(): | ||
39 | parser = argparse.ArgumentParser( | ||
40 | description="Simple example of a training script." | ||
41 | ) | ||
42 | parser.add_argument( | ||
43 | "--pretrained_model_name_or_path", | ||
44 | type=str, | ||
45 | default=None, | ||
46 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
47 | ) | ||
48 | parser.add_argument( | ||
49 | "--tokenizer_name", | ||
50 | type=str, | ||
51 | default=None, | ||
52 | help="Pretrained tokenizer name or path if not the same as model_name", | ||
53 | ) | ||
54 | parser.add_argument( | ||
55 | "--train_data_file", | ||
56 | type=str, | ||
57 | default=None, | ||
58 | help="A folder containing the training data." | ||
59 | ) | ||
60 | parser.add_argument( | ||
61 | "--train_data_template", | ||
62 | type=str, | ||
63 | default="template", | ||
64 | ) | ||
65 | parser.add_argument( | ||
66 | "--instance_identifier", | ||
67 | type=str, | ||
68 | default=None, | ||
69 | help="A token to use as a placeholder for the concept.", | ||
70 | ) | ||
71 | parser.add_argument( | ||
72 | "--class_identifier", | ||
73 | type=str, | ||
74 | default=None, | ||
75 | help="A token to use as a placeholder for the concept.", | ||
76 | ) | ||
77 | parser.add_argument( | ||
78 | "--placeholder_token", | ||
79 | type=str, | ||
80 | nargs='*', | ||
81 | default=[], | ||
82 | help="A token to use as a placeholder for the concept.", | ||
83 | ) | ||
84 | parser.add_argument( | ||
85 | "--initializer_token", | ||
86 | type=str, | ||
87 | nargs='*', | ||
88 | default=[], | ||
89 | help="A token to use as initializer word." | ||
90 | ) | ||
91 | parser.add_argument( | ||
92 | "--tag_dropout", | ||
93 | type=float, | ||
94 | default=0.1, | ||
95 | help="Tag dropout probability.", | ||
96 | ) | ||
97 | parser.add_argument( | ||
98 | "--num_class_images", | ||
99 | type=int, | ||
100 | default=400, | ||
101 | help="How many class images to generate." | ||
102 | ) | ||
103 | parser.add_argument( | ||
104 | "--repeats", | ||
105 | type=int, | ||
106 | default=1, | ||
107 | help="How many times to repeat the training data." | ||
108 | ) | ||
109 | parser.add_argument( | ||
110 | "--output_dir", | ||
111 | type=str, | ||
112 | default="output/dreambooth", | ||
113 | help="The output directory where the model predictions and checkpoints will be written.", | ||
114 | ) | ||
115 | parser.add_argument( | ||
116 | "--embeddings_dir", | ||
117 | type=str, | ||
118 | default=None, | ||
119 | help="The embeddings directory where Textual Inversion embeddings are stored.", | ||
120 | ) | ||
121 | parser.add_argument( | ||
122 | "--mode", | ||
123 | type=str, | ||
124 | default=None, | ||
125 | help="A mode to filter the dataset.", | ||
126 | ) | ||
127 | parser.add_argument( | ||
128 | "--seed", | ||
129 | type=int, | ||
130 | default=None, | ||
131 | help="A seed for reproducible training." | ||
132 | ) | ||
133 | parser.add_argument( | ||
134 | "--resolution", | ||
135 | type=int, | ||
136 | default=768, | ||
137 | help=( | ||
138 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
139 | " resolution" | ||
140 | ), | ||
141 | ) | ||
142 | parser.add_argument( | ||
143 | "--center_crop", | ||
144 | action="store_true", | ||
145 | help="Whether to center crop images before resizing to resolution" | ||
146 | ) | ||
147 | parser.add_argument( | ||
148 | "--dataloader_num_workers", | ||
149 | type=int, | ||
150 | default=0, | ||
151 | help=( | ||
152 | "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main" | ||
153 | " process." | ||
154 | ), | ||
155 | ) | ||
156 | parser.add_argument( | ||
157 | "--num_train_epochs", | ||
158 | type=int, | ||
159 | default=100 | ||
160 | ) | ||
161 | parser.add_argument( | ||
162 | "--max_train_steps", | ||
163 | type=int, | ||
164 | default=None, | ||
165 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | ||
166 | ) | ||
167 | parser.add_argument( | ||
168 | "--gradient_accumulation_steps", | ||
169 | type=int, | ||
170 | default=1, | ||
171 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
172 | ) | ||
173 | parser.add_argument( | ||
174 | "--gradient_checkpointing", | ||
175 | action="store_true", | ||
176 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | ||
177 | ) | ||
178 | parser.add_argument( | ||
179 | "--learning_rate_unet", | ||
180 | type=float, | ||
181 | default=2e-6, | ||
182 | help="Initial learning rate (after the potential warmup period) to use.", | ||
183 | ) | ||
184 | parser.add_argument( | ||
185 | "--scale_lr", | ||
186 | action="store_true", | ||
187 | default=True, | ||
188 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | ||
189 | ) | ||
190 | parser.add_argument( | ||
191 | "--lr_scheduler", | ||
192 | type=str, | ||
193 | default="one_cycle", | ||
194 | help=( | ||
195 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | ||
196 | ' "constant", "constant_with_warmup", "one_cycle"]' | ||
197 | ), | ||
198 | ) | ||
199 | parser.add_argument( | ||
200 | "--lr_warmup_epochs", | ||
201 | type=int, | ||
202 | default=10, | ||
203 | help="Number of steps for the warmup in the lr scheduler." | ||
204 | ) | ||
205 | parser.add_argument( | ||
206 | "--lr_cycles", | ||
207 | type=int, | ||
208 | default=None, | ||
209 | help="Number of restart cycles in the lr scheduler (if supported)." | ||
210 | ) | ||
211 | parser.add_argument( | ||
212 | "--use_8bit_adam", | ||
213 | action="store_true", | ||
214 | default=True, | ||
215 | help="Whether or not to use 8-bit Adam from bitsandbytes." | ||
216 | ) | ||
217 | parser.add_argument( | ||
218 | "--adam_beta1", | ||
219 | type=float, | ||
220 | default=0.9, | ||
221 | help="The beta1 parameter for the Adam optimizer." | ||
222 | ) | ||
223 | parser.add_argument( | ||
224 | "--adam_beta2", | ||
225 | type=float, | ||
226 | default=0.999, | ||
227 | help="The beta2 parameter for the Adam optimizer." | ||
228 | ) | ||
229 | parser.add_argument( | ||
230 | "--adam_weight_decay", | ||
231 | type=float, | ||
232 | default=1e-2, | ||
233 | help="Weight decay to use." | ||
234 | ) | ||
235 | parser.add_argument( | ||
236 | "--adam_epsilon", | ||
237 | type=float, | ||
238 | default=1e-08, | ||
239 | help="Epsilon value for the Adam optimizer" | ||
240 | ) | ||
241 | parser.add_argument( | ||
242 | "--mixed_precision", | ||
243 | type=str, | ||
244 | default="no", | ||
245 | choices=["no", "fp16", "bf16"], | ||
246 | help=( | ||
247 | "Whether to use mixed precision. Choose" | ||
248 | "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | ||
249 | "and an Nvidia Ampere GPU." | ||
250 | ), | ||
251 | ) | ||
252 | parser.add_argument( | ||
253 | "--sample_frequency", | ||
254 | type=int, | ||
255 | default=1, | ||
256 | help="How often to save a checkpoint and sample image", | ||
257 | ) | ||
258 | parser.add_argument( | ||
259 | "--sample_image_size", | ||
260 | type=int, | ||
261 | default=768, | ||
262 | help="Size of sample images", | ||
263 | ) | ||
264 | parser.add_argument( | ||
265 | "--sample_batches", | ||
266 | type=int, | ||
267 | default=1, | ||
268 | help="Number of sample batches to generate per checkpoint", | ||
269 | ) | ||
270 | parser.add_argument( | ||
271 | "--sample_batch_size", | ||
272 | type=int, | ||
273 | default=1, | ||
274 | help="Number of samples to generate per batch", | ||
275 | ) | ||
276 | parser.add_argument( | ||
277 | "--valid_set_size", | ||
278 | type=int, | ||
279 | default=None, | ||
280 | help="Number of images in the validation dataset." | ||
281 | ) | ||
282 | parser.add_argument( | ||
283 | "--train_batch_size", | ||
284 | type=int, | ||
285 | default=1, | ||
286 | help="Batch size (per device) for the training dataloader." | ||
287 | ) | ||
288 | parser.add_argument( | ||
289 | "--sample_steps", | ||
290 | type=int, | ||
291 | default=15, | ||
292 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | ||
293 | ) | ||
294 | parser.add_argument( | ||
295 | "--prior_loss_weight", | ||
296 | type=float, | ||
297 | default=1.0, | ||
298 | help="The weight of prior preservation loss." | ||
299 | ) | ||
300 | parser.add_argument( | ||
301 | "--max_grad_norm", | ||
302 | default=1.0, | ||
303 | type=float, | ||
304 | help="Max gradient norm." | ||
305 | ) | ||
306 | parser.add_argument( | ||
307 | "--noise_timesteps", | ||
308 | type=int, | ||
309 | default=1000, | ||
310 | ) | ||
311 | parser.add_argument( | ||
312 | "--config", | ||
313 | type=str, | ||
314 | default=None, | ||
315 | help="Path to a JSON configuration file containing arguments for invoking this script." | ||
316 | ) | ||
317 | |||
318 | args = parser.parse_args() | ||
319 | if args.config is not None: | ||
320 | with open(args.config, 'rt') as f: | ||
321 | args = parser.parse_args( | ||
322 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
323 | |||
324 | if args.train_data_file is None: | ||
325 | raise ValueError("You must specify --train_data_file") | ||
326 | |||
327 | if args.pretrained_model_name_or_path is None: | ||
328 | raise ValueError("You must specify --pretrained_model_name_or_path") | ||
329 | |||
330 | if args.instance_identifier is None: | ||
331 | raise ValueError("You must specify --instance_identifier") | ||
332 | |||
333 | if isinstance(args.initializer_token, str): | ||
334 | args.initializer_token = [args.initializer_token] | ||
335 | |||
336 | if isinstance(args.placeholder_token, str): | ||
337 | args.placeholder_token = [args.placeholder_token] | ||
338 | |||
339 | if len(args.placeholder_token) == 0: | ||
340 | args.placeholder_token = [f"<*{i}>" for i in range(len(args.initializer_token))] | ||
341 | |||
342 | if len(args.placeholder_token) != len(args.initializer_token): | ||
343 | raise ValueError("Number of items in --placeholder_token and --initializer_token must match") | ||
344 | |||
345 | if args.output_dir is None: | ||
346 | raise ValueError("You must specify --output_dir") | ||
347 | |||
348 | return args | ||
349 | |||
350 | |||
351 | def save_args(basepath: Path, args, extra={}): | ||
352 | info = {"args": vars(args)} | ||
353 | info["args"].update(extra) | ||
354 | with open(basepath.joinpath("args.json"), "w") as f: | ||
355 | json.dump(info, f, indent=4) | ||
356 | |||
357 | |||
358 | def freeze_params(params): | ||
359 | for param in params: | ||
360 | param.requires_grad = False | ||
361 | |||
362 | |||
363 | def make_grid(images, rows, cols): | ||
364 | w, h = images[0].size | ||
365 | grid = Image.new('RGB', size=(cols*w, rows*h)) | ||
366 | for i, image in enumerate(images): | ||
367 | grid.paste(image, box=(i % cols*w, i//cols*h)) | ||
368 | return grid | ||
369 | |||
370 | |||
371 | class AverageMeter: | ||
372 | def __init__(self, name=None): | ||
373 | self.name = name | ||
374 | self.reset() | ||
375 | |||
376 | def reset(self): | ||
377 | self.sum = self.count = self.avg = 0 | ||
378 | |||
379 | def update(self, val, n=1): | ||
380 | self.sum += val * n | ||
381 | self.count += n | ||
382 | self.avg = self.sum / self.count | ||
383 | |||
384 | |||
385 | class Checkpointer: | ||
386 | def __init__( | ||
387 | self, | ||
388 | datamodule, | ||
389 | accelerator, | ||
390 | vae, | ||
391 | unet, | ||
392 | unet_lora, | ||
393 | tokenizer, | ||
394 | text_encoder, | ||
395 | scheduler, | ||
396 | output_dir: Path, | ||
397 | instance_identifier, | ||
398 | placeholder_token, | ||
399 | placeholder_token_id, | ||
400 | sample_image_size, | ||
401 | sample_batches, | ||
402 | sample_batch_size, | ||
403 | seed | ||
404 | ): | ||
405 | self.datamodule = datamodule | ||
406 | self.accelerator = accelerator | ||
407 | self.vae = vae | ||
408 | self.unet = unet | ||
409 | self.unet_lora = unet_lora | ||
410 | self.tokenizer = tokenizer | ||
411 | self.text_encoder = text_encoder | ||
412 | self.scheduler = scheduler | ||
413 | self.output_dir = output_dir | ||
414 | self.instance_identifier = instance_identifier | ||
415 | self.placeholder_token = placeholder_token | ||
416 | self.placeholder_token_id = placeholder_token_id | ||
417 | self.sample_image_size = sample_image_size | ||
418 | self.seed = seed or torch.random.seed() | ||
419 | self.sample_batches = sample_batches | ||
420 | self.sample_batch_size = sample_batch_size | ||
421 | |||
422 | @torch.no_grad() | ||
423 | def save_model(self): | ||
424 | print("Saving model...") | ||
425 | |||
426 | unet_lora = self.accelerator.unwrap_model(self.unet_lora) | ||
427 | unet_lora.save_pretrained(self.output_dir.joinpath("model")) | ||
428 | |||
429 | del unet_lora | ||
430 | |||
431 | if torch.cuda.is_available(): | ||
432 | torch.cuda.empty_cache() | ||
433 | |||
434 | @torch.no_grad() | ||
435 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
436 | samples_path = Path(self.output_dir).joinpath("samples") | ||
437 | |||
438 | unet = self.accelerator.unwrap_model(self.unet) | ||
439 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
440 | |||
441 | pipeline = VlpnStableDiffusion( | ||
442 | text_encoder=text_encoder, | ||
443 | vae=self.vae, | ||
444 | unet=unet, | ||
445 | tokenizer=self.tokenizer, | ||
446 | scheduler=self.scheduler, | ||
447 | ).to(self.accelerator.device) | ||
448 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
449 | |||
450 | train_data = self.datamodule.train_dataloader() | ||
451 | val_data = self.datamodule.val_dataloader() | ||
452 | |||
453 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) | ||
454 | stable_latents = torch.randn( | ||
455 | (self.sample_batch_size, pipeline.unet.in_channels, self.sample_image_size // 8, self.sample_image_size // 8), | ||
456 | device=pipeline.device, | ||
457 | generator=generator, | ||
458 | ) | ||
459 | |||
460 | with torch.autocast("cuda"), torch.inference_mode(): | ||
461 | for pool, data, latents in [("stable", val_data, stable_latents), ("val", val_data, None), ("train", train_data, None)]: | ||
462 | all_samples = [] | ||
463 | file_path = samples_path.joinpath(pool, f"step_{step}.jpg") | ||
464 | file_path.parent.mkdir(parents=True, exist_ok=True) | ||
465 | |||
466 | data_enum = enumerate(data) | ||
467 | |||
468 | batches = [ | ||
469 | batch | ||
470 | for j, batch in data_enum | ||
471 | if j * data.batch_size < self.sample_batch_size * self.sample_batches | ||
472 | ] | ||
473 | prompts = [ | ||
474 | prompt.format(identifier=self.instance_identifier) | ||
475 | for batch in batches | ||
476 | for prompt in batch["prompts"] | ||
477 | ] | ||
478 | nprompts = [ | ||
479 | prompt | ||
480 | for batch in batches | ||
481 | for prompt in batch["nprompts"] | ||
482 | ] | ||
483 | |||
484 | for i in range(self.sample_batches): | ||
485 | prompt = prompts[i * self.sample_batch_size:(i + 1) * self.sample_batch_size] | ||
486 | nprompt = nprompts[i * self.sample_batch_size:(i + 1) * self.sample_batch_size] | ||
487 | |||
488 | samples = pipeline( | ||
489 | prompt=prompt, | ||
490 | negative_prompt=nprompt, | ||
491 | height=self.sample_image_size, | ||
492 | width=self.sample_image_size, | ||
493 | image=latents[:len(prompt)] if latents is not None else None, | ||
494 | generator=generator if latents is not None else None, | ||
495 | guidance_scale=guidance_scale, | ||
496 | eta=eta, | ||
497 | num_inference_steps=num_inference_steps, | ||
498 | output_type='pil' | ||
499 | ).images | ||
500 | |||
501 | all_samples += samples | ||
502 | |||
503 | del samples | ||
504 | |||
505 | image_grid = make_grid(all_samples, self.sample_batches, self.sample_batch_size) | ||
506 | image_grid.save(file_path, quality=85) | ||
507 | |||
508 | del all_samples | ||
509 | del image_grid | ||
510 | |||
511 | del unet | ||
512 | del text_encoder | ||
513 | del pipeline | ||
514 | del generator | ||
515 | del stable_latents | ||
516 | |||
517 | if torch.cuda.is_available(): | ||
518 | torch.cuda.empty_cache() | ||
519 | |||
520 | |||
521 | def main(): | ||
522 | args = parse_args() | ||
523 | |||
524 | instance_identifier = args.instance_identifier | ||
525 | |||
526 | if len(args.placeholder_token) != 0: | ||
527 | instance_identifier = instance_identifier.format(args.placeholder_token[0]) | ||
528 | |||
529 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
530 | basepath = Path(args.output_dir).joinpath(slugify(instance_identifier), now) | ||
531 | basepath.mkdir(parents=True, exist_ok=True) | ||
532 | |||
533 | accelerator = Accelerator( | ||
534 | log_with=LoggerType.TENSORBOARD, | ||
535 | logging_dir=f"{basepath}", | ||
536 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
537 | mixed_precision=args.mixed_precision | ||
538 | ) | ||
539 | |||
540 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
541 | |||
542 | args.seed = args.seed or (torch.random.seed() >> 32) | ||
543 | set_seed(args.seed) | ||
544 | |||
545 | save_args(basepath, args) | ||
546 | |||
547 | # Load the tokenizer and add the placeholder token as a additional special token | ||
548 | if args.tokenizer_name: | ||
549 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
550 | elif args.pretrained_model_name_or_path: | ||
551 | tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') | ||
552 | |||
553 | # Load models and create wrapper for stable diffusion | ||
554 | text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') | ||
555 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') | ||
556 | unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') | ||
557 | noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder='scheduler') | ||
558 | checkpoint_scheduler = DPMSolverMultistepScheduler.from_pretrained( | ||
559 | args.pretrained_model_name_or_path, subfolder='scheduler') | ||
560 | |||
561 | unet_lora = LoraAttention() | ||
562 | |||
563 | vae.enable_slicing() | ||
564 | vae.set_use_memory_efficient_attention_xformers(True) | ||
565 | unet.set_use_memory_efficient_attention_xformers(True) | ||
566 | unet.set_attn_processor(unet_lora) | ||
567 | |||
568 | if args.gradient_checkpointing: | ||
569 | unet.enable_gradient_checkpointing() | ||
570 | text_encoder.gradient_checkpointing_enable() | ||
571 | |||
572 | # Freeze text_encoder and vae | ||
573 | vae.requires_grad_(False) | ||
574 | unet.requires_grad_(False) | ||
575 | |||
576 | if args.embeddings_dir is not None: | ||
577 | embeddings_dir = Path(args.embeddings_dir) | ||
578 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
579 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
580 | added_tokens = load_text_embeddings(tokenizer, text_encoder, embeddings_dir) | ||
581 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {added_tokens}") | ||
582 | |||
583 | if len(args.placeholder_token) != 0: | ||
584 | # Convert the initializer_token, placeholder_token to ids | ||
585 | initializer_token_ids = torch.stack([ | ||
586 | torch.tensor(tokenizer.encode(token, add_special_tokens=False)[:1]) | ||
587 | for token in args.initializer_token | ||
588 | ]) | ||
589 | |||
590 | num_added_tokens = tokenizer.add_tokens(args.placeholder_token) | ||
591 | print(f"Added {num_added_tokens} new tokens.") | ||
592 | |||
593 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | ||
594 | |||
595 | # Resize the token embeddings as we are adding new special tokens to the tokenizer | ||
596 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
597 | |||
598 | token_embeds = text_encoder.get_input_embeddings().weight.data | ||
599 | original_token_embeds = token_embeds.clone().to(accelerator.device) | ||
600 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | ||
601 | |||
602 | for (token_id, embeddings) in zip(placeholder_token_id, initializer_token_embeddings): | ||
603 | token_embeds[token_id] = embeddings | ||
604 | else: | ||
605 | placeholder_token_id = [] | ||
606 | |||
607 | print(f"Training added text embeddings") | ||
608 | |||
609 | freeze_params(itertools.chain( | ||
610 | text_encoder.text_model.encoder.parameters(), | ||
611 | text_encoder.text_model.final_layer_norm.parameters(), | ||
612 | text_encoder.text_model.embeddings.position_embedding.parameters(), | ||
613 | )) | ||
614 | |||
615 | index_fixed_tokens = torch.arange(len(tokenizer)) | ||
616 | index_fixed_tokens = index_fixed_tokens[~torch.isin(index_fixed_tokens, torch.tensor(placeholder_token_id))] | ||
617 | |||
618 | prompt_processor = PromptProcessor(tokenizer, text_encoder) | ||
619 | |||
620 | if args.scale_lr: | ||
621 | args.learning_rate_unet = ( | ||
622 | args.learning_rate_unet * args.gradient_accumulation_steps * | ||
623 | args.train_batch_size * accelerator.num_processes | ||
624 | ) | ||
625 | |||
626 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
627 | if args.use_8bit_adam: | ||
628 | try: | ||
629 | import bitsandbytes as bnb | ||
630 | except ImportError: | ||
631 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
632 | |||
633 | optimizer_class = bnb.optim.AdamW8bit | ||
634 | else: | ||
635 | optimizer_class = torch.optim.AdamW | ||
636 | |||
637 | # Initialize the optimizer | ||
638 | optimizer = optimizer_class( | ||
639 | [ | ||
640 | { | ||
641 | 'params': unet_lora.parameters(), | ||
642 | 'lr': args.learning_rate_unet, | ||
643 | }, | ||
644 | ], | ||
645 | betas=(args.adam_beta1, args.adam_beta2), | ||
646 | weight_decay=args.adam_weight_decay, | ||
647 | eps=args.adam_epsilon, | ||
648 | ) | ||
649 | |||
650 | weight_dtype = torch.float32 | ||
651 | if args.mixed_precision == "fp16": | ||
652 | weight_dtype = torch.float16 | ||
653 | elif args.mixed_precision == "bf16": | ||
654 | weight_dtype = torch.bfloat16 | ||
655 | |||
656 | def collate_fn(examples): | ||
657 | prompts = [example["prompts"] for example in examples] | ||
658 | nprompts = [example["nprompts"] for example in examples] | ||
659 | input_ids = [example["instance_prompt_ids"] for example in examples] | ||
660 | pixel_values = [example["instance_images"] for example in examples] | ||
661 | |||
662 | # concat class and instance examples for prior preservation | ||
663 | if args.num_class_images != 0 and "class_prompt_ids" in examples[0]: | ||
664 | input_ids += [example["class_prompt_ids"] for example in examples] | ||
665 | pixel_values += [example["class_images"] for example in examples] | ||
666 | |||
667 | pixel_values = torch.stack(pixel_values) | ||
668 | pixel_values = pixel_values.to(dtype=weight_dtype, memory_format=torch.contiguous_format) | ||
669 | |||
670 | inputs = prompt_processor.unify_input_ids(input_ids) | ||
671 | |||
672 | batch = { | ||
673 | "prompts": prompts, | ||
674 | "nprompts": nprompts, | ||
675 | "input_ids": inputs.input_ids, | ||
676 | "pixel_values": pixel_values, | ||
677 | "attention_mask": inputs.attention_mask, | ||
678 | } | ||
679 | return batch | ||
680 | |||
681 | datamodule = CSVDataModule( | ||
682 | data_file=args.train_data_file, | ||
683 | batch_size=args.train_batch_size, | ||
684 | prompt_processor=prompt_processor, | ||
685 | instance_identifier=instance_identifier, | ||
686 | class_identifier=args.class_identifier, | ||
687 | class_subdir="cls", | ||
688 | num_class_images=args.num_class_images, | ||
689 | size=args.resolution, | ||
690 | repeats=args.repeats, | ||
691 | mode=args.mode, | ||
692 | dropout=args.tag_dropout, | ||
693 | center_crop=args.center_crop, | ||
694 | template_key=args.train_data_template, | ||
695 | valid_set_size=args.valid_set_size, | ||
696 | num_workers=args.dataloader_num_workers, | ||
697 | collate_fn=collate_fn | ||
698 | ) | ||
699 | |||
700 | datamodule.prepare_data() | ||
701 | datamodule.setup() | ||
702 | |||
703 | if args.num_class_images != 0: | ||
704 | missing_data = [item for item in datamodule.data_train if not item.class_image_path.exists()] | ||
705 | |||
706 | if len(missing_data) != 0: | ||
707 | batched_data = [ | ||
708 | missing_data[i:i+args.sample_batch_size] | ||
709 | for i in range(0, len(missing_data), args.sample_batch_size) | ||
710 | ] | ||
711 | |||
712 | pipeline = VlpnStableDiffusion( | ||
713 | text_encoder=text_encoder, | ||
714 | vae=vae, | ||
715 | unet=unet, | ||
716 | tokenizer=tokenizer, | ||
717 | scheduler=checkpoint_scheduler, | ||
718 | ).to(accelerator.device) | ||
719 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
720 | |||
721 | with torch.autocast("cuda"), torch.inference_mode(): | ||
722 | for batch in batched_data: | ||
723 | image_name = [item.class_image_path for item in batch] | ||
724 | prompt = [item.prompt.format(identifier=args.class_identifier) for item in batch] | ||
725 | nprompt = [item.nprompt for item in batch] | ||
726 | |||
727 | images = pipeline( | ||
728 | prompt=prompt, | ||
729 | negative_prompt=nprompt, | ||
730 | num_inference_steps=args.sample_steps | ||
731 | ).images | ||
732 | |||
733 | for i, image in enumerate(images): | ||
734 | image.save(image_name[i]) | ||
735 | |||
736 | del pipeline | ||
737 | |||
738 | if torch.cuda.is_available(): | ||
739 | torch.cuda.empty_cache() | ||
740 | |||
741 | train_dataloader = datamodule.train_dataloader() | ||
742 | val_dataloader = datamodule.val_dataloader() | ||
743 | |||
744 | # Scheduler and math around the number of training steps. | ||
745 | overrode_max_train_steps = False | ||
746 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
747 | if args.max_train_steps is None: | ||
748 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
749 | overrode_max_train_steps = True | ||
750 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
751 | |||
752 | warmup_steps = args.lr_warmup_epochs * num_update_steps_per_epoch * args.gradient_accumulation_steps | ||
753 | |||
754 | if args.lr_scheduler == "one_cycle": | ||
755 | lr_scheduler = get_one_cycle_schedule( | ||
756 | optimizer=optimizer, | ||
757 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
758 | ) | ||
759 | elif args.lr_scheduler == "cosine_with_restarts": | ||
760 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | ||
761 | optimizer=optimizer, | ||
762 | num_warmup_steps=warmup_steps, | ||
763 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
764 | num_cycles=args.lr_cycles or math.ceil(math.sqrt( | ||
765 | ((args.max_train_steps - warmup_steps) / num_update_steps_per_epoch))), | ||
766 | ) | ||
767 | else: | ||
768 | lr_scheduler = get_scheduler( | ||
769 | args.lr_scheduler, | ||
770 | optimizer=optimizer, | ||
771 | num_warmup_steps=warmup_steps, | ||
772 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
773 | ) | ||
774 | |||
775 | unet_lora, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
776 | unet_lora, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
777 | ) | ||
778 | |||
779 | # Move text_encoder and vae to device | ||
780 | vae.to(accelerator.device, dtype=weight_dtype) | ||
781 | unet.to(accelerator.device, dtype=weight_dtype) | ||
782 | text_encoder.to(accelerator.device, dtype=weight_dtype) | ||
783 | |||
784 | # Keep text_encoder and vae in eval mode as we don't train these | ||
785 | vae.eval() | ||
786 | unet.eval() | ||
787 | text_encoder.eval() | ||
788 | |||
789 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
790 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
791 | if overrode_max_train_steps: | ||
792 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
793 | |||
794 | num_val_steps_per_epoch = len(val_dataloader) | ||
795 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
796 | val_steps = num_val_steps_per_epoch * num_epochs | ||
797 | |||
798 | # We need to initialize the trackers we use, and also store our configuration. | ||
799 | # The trackers initializes automatically on the main process. | ||
800 | if accelerator.is_main_process: | ||
801 | config = vars(args).copy() | ||
802 | config["initializer_token"] = " ".join(config["initializer_token"]) | ||
803 | config["placeholder_token"] = " ".join(config["placeholder_token"]) | ||
804 | accelerator.init_trackers("dreambooth", config=config) | ||
805 | |||
806 | # Train! | ||
807 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
808 | |||
809 | logger.info("***** Running training *****") | ||
810 | logger.info(f" Num Epochs = {num_epochs}") | ||
811 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
812 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
813 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
814 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
815 | # Only show the progress bar once on each machine. | ||
816 | |||
817 | global_step = 0 | ||
818 | |||
819 | avg_loss = AverageMeter() | ||
820 | avg_acc = AverageMeter() | ||
821 | |||
822 | avg_loss_val = AverageMeter() | ||
823 | avg_acc_val = AverageMeter() | ||
824 | |||
825 | max_acc_val = 0.0 | ||
826 | |||
827 | checkpointer = Checkpointer( | ||
828 | datamodule=datamodule, | ||
829 | accelerator=accelerator, | ||
830 | vae=vae, | ||
831 | unet=unet, | ||
832 | tokenizer=tokenizer, | ||
833 | text_encoder=text_encoder, | ||
834 | scheduler=checkpoint_scheduler, | ||
835 | output_dir=basepath, | ||
836 | instance_identifier=instance_identifier, | ||
837 | placeholder_token=args.placeholder_token, | ||
838 | placeholder_token_id=placeholder_token_id, | ||
839 | sample_image_size=args.sample_image_size, | ||
840 | sample_batch_size=args.sample_batch_size, | ||
841 | sample_batches=args.sample_batches, | ||
842 | seed=args.seed | ||
843 | ) | ||
844 | |||
845 | if accelerator.is_main_process: | ||
846 | checkpointer.save_samples(0, args.sample_steps) | ||
847 | |||
848 | local_progress_bar = tqdm( | ||
849 | range(num_update_steps_per_epoch + num_val_steps_per_epoch), | ||
850 | disable=not accelerator.is_local_main_process, | ||
851 | dynamic_ncols=True | ||
852 | ) | ||
853 | local_progress_bar.set_description("Epoch X / Y") | ||
854 | |||
855 | global_progress_bar = tqdm( | ||
856 | range(args.max_train_steps + val_steps), | ||
857 | disable=not accelerator.is_local_main_process, | ||
858 | dynamic_ncols=True | ||
859 | ) | ||
860 | global_progress_bar.set_description("Total progress") | ||
861 | |||
862 | try: | ||
863 | for epoch in range(num_epochs): | ||
864 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
865 | local_progress_bar.reset() | ||
866 | |||
867 | unet_lora.train() | ||
868 | |||
869 | for step, batch in enumerate(train_dataloader): | ||
870 | with accelerator.accumulate(unet_lora): | ||
871 | # Convert images to latent space | ||
872 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
873 | latents = latents * 0.18215 | ||
874 | |||
875 | # Sample noise that we'll add to the latents | ||
876 | noise = torch.randn_like(latents) | ||
877 | bsz = latents.shape[0] | ||
878 | # Sample a random timestep for each image | ||
879 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
880 | (bsz,), device=latents.device) | ||
881 | timesteps = timesteps.long() | ||
882 | |||
883 | # Add noise to the latents according to the noise magnitude at each timestep | ||
884 | # (this is the forward diffusion process) | ||
885 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
886 | |||
887 | # Get the text embedding for conditioning | ||
888 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | ||
889 | |||
890 | # Predict the noise residual | ||
891 | model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
892 | |||
893 | # Get the target for loss depending on the prediction type | ||
894 | if noise_scheduler.config.prediction_type == "epsilon": | ||
895 | target = noise | ||
896 | elif noise_scheduler.config.prediction_type == "v_prediction": | ||
897 | target = noise_scheduler.get_velocity(latents, noise, timesteps) | ||
898 | else: | ||
899 | raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | ||
900 | |||
901 | if args.num_class_images != 0: | ||
902 | # Chunk the noise and model_pred into two parts and compute the loss on each part separately. | ||
903 | model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | ||
904 | target, target_prior = torch.chunk(target, 2, dim=0) | ||
905 | |||
906 | # Compute instance loss | ||
907 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() | ||
908 | |||
909 | # Compute prior loss | ||
910 | prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") | ||
911 | |||
912 | # Add the prior loss to the instance loss. | ||
913 | loss = loss + args.prior_loss_weight * prior_loss | ||
914 | else: | ||
915 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
916 | |||
917 | acc = (model_pred == latents).float().mean() | ||
918 | |||
919 | accelerator.backward(loss) | ||
920 | |||
921 | if accelerator.sync_gradients: | ||
922 | accelerator.clip_grad_norm_(unet_lora.parameters(), args.max_grad_norm) | ||
923 | |||
924 | optimizer.step() | ||
925 | if not accelerator.optimizer_step_was_skipped: | ||
926 | lr_scheduler.step() | ||
927 | optimizer.zero_grad(set_to_none=True) | ||
928 | |||
929 | with torch.no_grad(): | ||
930 | text_encoder.get_input_embeddings( | ||
931 | ).weight[index_fixed_tokens] = original_token_embeds[index_fixed_tokens] | ||
932 | |||
933 | avg_loss.update(loss.detach_(), bsz) | ||
934 | avg_acc.update(acc.detach_(), bsz) | ||
935 | |||
936 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
937 | if accelerator.sync_gradients: | ||
938 | local_progress_bar.update(1) | ||
939 | global_progress_bar.update(1) | ||
940 | |||
941 | global_step += 1 | ||
942 | |||
943 | logs = { | ||
944 | "train/loss": avg_loss.avg.item(), | ||
945 | "train/acc": avg_acc.avg.item(), | ||
946 | "train/cur_loss": loss.item(), | ||
947 | "train/cur_acc": acc.item(), | ||
948 | "lr/unet": lr_scheduler.get_last_lr()[0], | ||
949 | "lr/text": lr_scheduler.get_last_lr()[1] | ||
950 | } | ||
951 | |||
952 | accelerator.log(logs, step=global_step) | ||
953 | |||
954 | local_progress_bar.set_postfix(**logs) | ||
955 | |||
956 | if global_step >= args.max_train_steps: | ||
957 | break | ||
958 | |||
959 | accelerator.wait_for_everyone() | ||
960 | |||
961 | unet_lora.eval() | ||
962 | |||
963 | with torch.inference_mode(): | ||
964 | for step, batch in enumerate(val_dataloader): | ||
965 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
966 | latents = latents * 0.18215 | ||
967 | |||
968 | noise = torch.randn_like(latents) | ||
969 | bsz = latents.shape[0] | ||
970 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
971 | (bsz,), device=latents.device) | ||
972 | timesteps = timesteps.long() | ||
973 | |||
974 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
975 | |||
976 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | ||
977 | |||
978 | model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
979 | |||
980 | # Get the target for loss depending on the prediction type | ||
981 | if noise_scheduler.config.prediction_type == "epsilon": | ||
982 | target = noise | ||
983 | elif noise_scheduler.config.prediction_type == "v_prediction": | ||
984 | target = noise_scheduler.get_velocity(latents, noise, timesteps) | ||
985 | else: | ||
986 | raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | ||
987 | |||
988 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
989 | |||
990 | acc = (model_pred == latents).float().mean() | ||
991 | |||
992 | avg_loss_val.update(loss.detach_(), bsz) | ||
993 | avg_acc_val.update(acc.detach_(), bsz) | ||
994 | |||
995 | if accelerator.sync_gradients: | ||
996 | local_progress_bar.update(1) | ||
997 | global_progress_bar.update(1) | ||
998 | |||
999 | logs = { | ||
1000 | "val/loss": avg_loss_val.avg.item(), | ||
1001 | "val/acc": avg_acc_val.avg.item(), | ||
1002 | "val/cur_loss": loss.item(), | ||
1003 | "val/cur_acc": acc.item(), | ||
1004 | } | ||
1005 | local_progress_bar.set_postfix(**logs) | ||
1006 | |||
1007 | accelerator.log({ | ||
1008 | "val/loss": avg_loss_val.avg.item(), | ||
1009 | "val/acc": avg_acc_val.avg.item(), | ||
1010 | }, step=global_step) | ||
1011 | |||
1012 | local_progress_bar.clear() | ||
1013 | global_progress_bar.clear() | ||
1014 | |||
1015 | if avg_acc_val.avg.item() > max_acc_val: | ||
1016 | accelerator.print( | ||
1017 | f"Global step {global_step}: Validation accuracy reached new maximum: {max_acc_val:.2e} -> {avg_acc_val.avg.item():.2e}") | ||
1018 | max_acc_val = avg_acc_val.avg.item() | ||
1019 | |||
1020 | if accelerator.is_main_process: | ||
1021 | if (epoch + 1) % args.sample_frequency == 0: | ||
1022 | checkpointer.save_samples(global_step, args.sample_steps) | ||
1023 | |||
1024 | # Create the pipeline using using the trained modules and save it. | ||
1025 | if accelerator.is_main_process: | ||
1026 | print("Finished! Saving final checkpoint and resume state.") | ||
1027 | checkpointer.save_model() | ||
1028 | |||
1029 | accelerator.end_training() | ||
1030 | |||
1031 | except KeyboardInterrupt: | ||
1032 | if accelerator.is_main_process: | ||
1033 | print("Interrupted, saving checkpoint and resume state...") | ||
1034 | checkpointer.save_model() | ||
1035 | accelerator.end_training() | ||
1036 | quit() | ||
1037 | |||
1038 | |||
1039 | if __name__ == "__main__": | ||
1040 | main() | ||
diff --git a/train_ti.py b/train_ti.py index 5c0299e..9616db6 100644 --- a/train_ti.py +++ b/train_ti.py | |||
@@ -24,7 +24,6 @@ from slugify import slugify | |||
24 | 24 | ||
25 | from common import load_text_embeddings, load_text_embedding | 25 | from common import load_text_embeddings, load_text_embedding |
26 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 26 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
27 | from pipelines.util import set_use_memory_efficient_attention_xformers | ||
28 | from data.csv import CSVDataModule, CSVDataItem | 27 | from data.csv import CSVDataModule, CSVDataItem |
29 | from training.optimization import get_one_cycle_schedule | 28 | from training.optimization import get_one_cycle_schedule |
30 | from models.clip.prompt import PromptProcessor | 29 | from models.clip.prompt import PromptProcessor |
@@ -557,8 +556,8 @@ def main(): | |||
557 | args.pretrained_model_name_or_path, subfolder='scheduler') | 556 | args.pretrained_model_name_or_path, subfolder='scheduler') |
558 | 557 | ||
559 | vae.enable_slicing() | 558 | vae.enable_slicing() |
560 | set_use_memory_efficient_attention_xformers(unet, True) | 559 | vae.set_use_memory_efficient_attention_xformers(True) |
561 | set_use_memory_efficient_attention_xformers(vae, True) | 560 | unet.set_use_memory_efficient_attention_xformers(True) |
562 | 561 | ||
563 | if args.gradient_checkpointing: | 562 | if args.gradient_checkpointing: |
564 | unet.enable_gradient_checkpointing() | 563 | unet.enable_gradient_checkpointing() |
diff --git a/training/lora.py b/training/lora.py new file mode 100644 index 0000000..d8dc147 --- /dev/null +++ b/training/lora.py | |||
@@ -0,0 +1,27 @@ | |||
1 | import torch.nn as nn | ||
2 | from diffusers import ModelMixin, ConfigMixin, XFormersCrossAttnProcessor, register_to_config | ||
3 | |||
4 | |||
5 | class LoraAttention(ModelMixin, ConfigMixin): | ||
6 | @register_to_config | ||
7 | def __init__(self, in_features, out_features, r=4): | ||
8 | super().__init__() | ||
9 | |||
10 | if r > min(in_features, out_features): | ||
11 | raise ValueError( | ||
12 | f"LoRA rank {r} must be less or equal than {min(in_features, out_features)}" | ||
13 | ) | ||
14 | |||
15 | self.lora_down = nn.Linear(in_features, r, bias=False) | ||
16 | self.lora_up = nn.Linear(r, out_features, bias=False) | ||
17 | self.scale = 1.0 | ||
18 | |||
19 | self.processor = XFormersCrossAttnProcessor() | ||
20 | |||
21 | nn.init.normal_(self.lora_down.weight, std=1 / r**2) | ||
22 | nn.init.zeros_(self.lora_up.weight) | ||
23 | |||
24 | def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None): | ||
25 | hidden_states = self.processor(attn, hidden_states, encoder_hidden_states, attention_mask, number) | ||
26 | hidden_states = hidden_states + self.lora_up(self.lora_down(hidden_states)) * self.scale | ||
27 | return hidden_states | ||