diff options
| -rw-r--r-- | pipelines/util.py | 9 | ||||
| -rw-r--r-- | train_dreambooth.py | 7 | ||||
| -rw-r--r-- | train_lora.py | 1040 | ||||
| -rw-r--r-- | train_ti.py | 5 | ||||
| -rw-r--r-- | training/lora.py | 27 |
5 files changed, 1073 insertions, 15 deletions
diff --git a/pipelines/util.py b/pipelines/util.py deleted file mode 100644 index 661dbee..0000000 --- a/pipelines/util.py +++ /dev/null | |||
| @@ -1,9 +0,0 @@ | |||
| 1 | import torch | ||
| 2 | |||
| 3 | |||
| 4 | def set_use_memory_efficient_attention_xformers(module: torch.nn.Module, valid: bool) -> None: | ||
| 5 | if hasattr(module, "set_use_memory_efficient_attention_xformers"): | ||
| 6 | module.set_use_memory_efficient_attention_xformers(valid) | ||
| 7 | |||
| 8 | for child in module.children(): | ||
| 9 | set_use_memory_efficient_attention_xformers(child, valid) | ||
diff --git a/train_dreambooth.py b/train_dreambooth.py index 3eecf9c..0f8fece 100644 --- a/train_dreambooth.py +++ b/train_dreambooth.py | |||
| @@ -23,7 +23,6 @@ from slugify import slugify | |||
| 23 | 23 | ||
| 24 | from common import load_text_embeddings | 24 | from common import load_text_embeddings |
| 25 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 25 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 26 | from pipelines.util import set_use_memory_efficient_attention_xformers | ||
| 27 | from data.csv import CSVDataModule | 26 | from data.csv import CSVDataModule |
| 28 | from training.optimization import get_one_cycle_schedule | 27 | from training.optimization import get_one_cycle_schedule |
| 29 | from models.clip.prompt import PromptProcessor | 28 | from models.clip.prompt import PromptProcessor |
| @@ -614,8 +613,8 @@ def main(): | |||
| 614 | args.pretrained_model_name_or_path, subfolder='scheduler') | 613 | args.pretrained_model_name_or_path, subfolder='scheduler') |
| 615 | 614 | ||
| 616 | vae.enable_slicing() | 615 | vae.enable_slicing() |
| 617 | set_use_memory_efficient_attention_xformers(unet, True) | 616 | vae.set_use_memory_efficient_attention_xformers(True) |
| 618 | set_use_memory_efficient_attention_xformers(vae, True) | 617 | unet.set_use_memory_efficient_attention_xformers(True) |
| 619 | 618 | ||
| 620 | if args.gradient_checkpointing: | 619 | if args.gradient_checkpointing: |
| 621 | unet.enable_gradient_checkpointing() | 620 | unet.enable_gradient_checkpointing() |
| @@ -964,6 +963,7 @@ def main(): | |||
| 964 | # Add noise to the latents according to the noise magnitude at each timestep | 963 | # Add noise to the latents according to the noise magnitude at each timestep |
| 965 | # (this is the forward diffusion process) | 964 | # (this is the forward diffusion process) |
| 966 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | 965 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
| 966 | noisy_latents = noisy_latents.to(dtype=unet.dtype) | ||
| 967 | 967 | ||
| 968 | # Get the text embedding for conditioning | 968 | # Get the text embedding for conditioning |
| 969 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | 969 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) |
| @@ -1065,6 +1065,7 @@ def main(): | |||
| 1065 | timesteps = timesteps.long() | 1065 | timesteps = timesteps.long() |
| 1066 | 1066 | ||
| 1067 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | 1067 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
| 1068 | noisy_latents = noisy_latents.to(dtype=unet.dtype) | ||
| 1068 | 1069 | ||
| 1069 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | 1070 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) |
| 1070 | 1071 | ||
diff --git a/train_lora.py b/train_lora.py new file mode 100644 index 0000000..ffc1d10 --- /dev/null +++ b/train_lora.py | |||
| @@ -0,0 +1,1040 @@ | |||
| 1 | import argparse | ||
| 2 | import itertools | ||
| 3 | import math | ||
| 4 | import datetime | ||
| 5 | import logging | ||
| 6 | import json | ||
| 7 | from pathlib import Path | ||
| 8 | |||
| 9 | import torch | ||
| 10 | import torch.nn.functional as F | ||
| 11 | import torch.utils.checkpoint | ||
| 12 | |||
| 13 | from accelerate import Accelerator | ||
| 14 | from accelerate.logging import get_logger | ||
| 15 | from accelerate.utils import LoggerType, set_seed | ||
| 16 | from diffusers import AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, UNet2DConditionModel | ||
| 17 | from diffusers.optimization import get_scheduler, get_cosine_with_hard_restarts_schedule_with_warmup | ||
| 18 | from diffusers.training_utils import EMAModel | ||
| 19 | from PIL import Image | ||
| 20 | from tqdm.auto import tqdm | ||
| 21 | from transformers import CLIPTextModel, CLIPTokenizer | ||
| 22 | from slugify import slugify | ||
| 23 | |||
| 24 | from common import load_text_embeddings | ||
| 25 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 26 | from data.csv import CSVDataModule | ||
| 27 | from training.lora import LoraAttention | ||
| 28 | from training.optimization import get_one_cycle_schedule | ||
| 29 | from models.clip.prompt import PromptProcessor | ||
| 30 | |||
| 31 | logger = get_logger(__name__) | ||
| 32 | |||
| 33 | |||
| 34 | torch.backends.cuda.matmul.allow_tf32 = True | ||
| 35 | torch.backends.cudnn.benchmark = True | ||
| 36 | |||
| 37 | |||
| 38 | def parse_args(): | ||
| 39 | parser = argparse.ArgumentParser( | ||
| 40 | description="Simple example of a training script." | ||
| 41 | ) | ||
| 42 | parser.add_argument( | ||
| 43 | "--pretrained_model_name_or_path", | ||
| 44 | type=str, | ||
| 45 | default=None, | ||
| 46 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
| 47 | ) | ||
| 48 | parser.add_argument( | ||
| 49 | "--tokenizer_name", | ||
| 50 | type=str, | ||
| 51 | default=None, | ||
| 52 | help="Pretrained tokenizer name or path if not the same as model_name", | ||
| 53 | ) | ||
| 54 | parser.add_argument( | ||
| 55 | "--train_data_file", | ||
| 56 | type=str, | ||
| 57 | default=None, | ||
| 58 | help="A folder containing the training data." | ||
| 59 | ) | ||
| 60 | parser.add_argument( | ||
| 61 | "--train_data_template", | ||
| 62 | type=str, | ||
| 63 | default="template", | ||
| 64 | ) | ||
| 65 | parser.add_argument( | ||
| 66 | "--instance_identifier", | ||
| 67 | type=str, | ||
| 68 | default=None, | ||
| 69 | help="A token to use as a placeholder for the concept.", | ||
| 70 | ) | ||
| 71 | parser.add_argument( | ||
| 72 | "--class_identifier", | ||
| 73 | type=str, | ||
| 74 | default=None, | ||
| 75 | help="A token to use as a placeholder for the concept.", | ||
| 76 | ) | ||
| 77 | parser.add_argument( | ||
| 78 | "--placeholder_token", | ||
| 79 | type=str, | ||
| 80 | nargs='*', | ||
| 81 | default=[], | ||
| 82 | help="A token to use as a placeholder for the concept.", | ||
| 83 | ) | ||
| 84 | parser.add_argument( | ||
| 85 | "--initializer_token", | ||
| 86 | type=str, | ||
| 87 | nargs='*', | ||
| 88 | default=[], | ||
| 89 | help="A token to use as initializer word." | ||
| 90 | ) | ||
| 91 | parser.add_argument( | ||
| 92 | "--tag_dropout", | ||
| 93 | type=float, | ||
| 94 | default=0.1, | ||
| 95 | help="Tag dropout probability.", | ||
| 96 | ) | ||
| 97 | parser.add_argument( | ||
| 98 | "--num_class_images", | ||
| 99 | type=int, | ||
| 100 | default=400, | ||
| 101 | help="How many class images to generate." | ||
| 102 | ) | ||
| 103 | parser.add_argument( | ||
| 104 | "--repeats", | ||
| 105 | type=int, | ||
| 106 | default=1, | ||
| 107 | help="How many times to repeat the training data." | ||
| 108 | ) | ||
| 109 | parser.add_argument( | ||
| 110 | "--output_dir", | ||
| 111 | type=str, | ||
| 112 | default="output/dreambooth", | ||
| 113 | help="The output directory where the model predictions and checkpoints will be written.", | ||
| 114 | ) | ||
| 115 | parser.add_argument( | ||
| 116 | "--embeddings_dir", | ||
| 117 | type=str, | ||
| 118 | default=None, | ||
| 119 | help="The embeddings directory where Textual Inversion embeddings are stored.", | ||
| 120 | ) | ||
| 121 | parser.add_argument( | ||
| 122 | "--mode", | ||
| 123 | type=str, | ||
| 124 | default=None, | ||
| 125 | help="A mode to filter the dataset.", | ||
| 126 | ) | ||
| 127 | parser.add_argument( | ||
| 128 | "--seed", | ||
| 129 | type=int, | ||
| 130 | default=None, | ||
| 131 | help="A seed for reproducible training." | ||
| 132 | ) | ||
| 133 | parser.add_argument( | ||
| 134 | "--resolution", | ||
| 135 | type=int, | ||
| 136 | default=768, | ||
| 137 | help=( | ||
| 138 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
| 139 | " resolution" | ||
| 140 | ), | ||
| 141 | ) | ||
| 142 | parser.add_argument( | ||
| 143 | "--center_crop", | ||
| 144 | action="store_true", | ||
| 145 | help="Whether to center crop images before resizing to resolution" | ||
| 146 | ) | ||
| 147 | parser.add_argument( | ||
| 148 | "--dataloader_num_workers", | ||
| 149 | type=int, | ||
| 150 | default=0, | ||
| 151 | help=( | ||
| 152 | "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main" | ||
| 153 | " process." | ||
| 154 | ), | ||
| 155 | ) | ||
| 156 | parser.add_argument( | ||
| 157 | "--num_train_epochs", | ||
| 158 | type=int, | ||
| 159 | default=100 | ||
| 160 | ) | ||
| 161 | parser.add_argument( | ||
| 162 | "--max_train_steps", | ||
| 163 | type=int, | ||
| 164 | default=None, | ||
| 165 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | ||
| 166 | ) | ||
| 167 | parser.add_argument( | ||
| 168 | "--gradient_accumulation_steps", | ||
| 169 | type=int, | ||
| 170 | default=1, | ||
| 171 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
| 172 | ) | ||
| 173 | parser.add_argument( | ||
| 174 | "--gradient_checkpointing", | ||
| 175 | action="store_true", | ||
| 176 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | ||
| 177 | ) | ||
| 178 | parser.add_argument( | ||
| 179 | "--learning_rate_unet", | ||
| 180 | type=float, | ||
| 181 | default=2e-6, | ||
| 182 | help="Initial learning rate (after the potential warmup period) to use.", | ||
| 183 | ) | ||
| 184 | parser.add_argument( | ||
| 185 | "--scale_lr", | ||
| 186 | action="store_true", | ||
| 187 | default=True, | ||
| 188 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | ||
| 189 | ) | ||
| 190 | parser.add_argument( | ||
| 191 | "--lr_scheduler", | ||
| 192 | type=str, | ||
| 193 | default="one_cycle", | ||
| 194 | help=( | ||
| 195 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | ||
| 196 | ' "constant", "constant_with_warmup", "one_cycle"]' | ||
| 197 | ), | ||
| 198 | ) | ||
| 199 | parser.add_argument( | ||
| 200 | "--lr_warmup_epochs", | ||
| 201 | type=int, | ||
| 202 | default=10, | ||
| 203 | help="Number of steps for the warmup in the lr scheduler." | ||
| 204 | ) | ||
| 205 | parser.add_argument( | ||
| 206 | "--lr_cycles", | ||
| 207 | type=int, | ||
| 208 | default=None, | ||
| 209 | help="Number of restart cycles in the lr scheduler (if supported)." | ||
| 210 | ) | ||
| 211 | parser.add_argument( | ||
| 212 | "--use_8bit_adam", | ||
| 213 | action="store_true", | ||
| 214 | default=True, | ||
| 215 | help="Whether or not to use 8-bit Adam from bitsandbytes." | ||
| 216 | ) | ||
| 217 | parser.add_argument( | ||
| 218 | "--adam_beta1", | ||
| 219 | type=float, | ||
| 220 | default=0.9, | ||
| 221 | help="The beta1 parameter for the Adam optimizer." | ||
| 222 | ) | ||
| 223 | parser.add_argument( | ||
| 224 | "--adam_beta2", | ||
| 225 | type=float, | ||
| 226 | default=0.999, | ||
| 227 | help="The beta2 parameter for the Adam optimizer." | ||
| 228 | ) | ||
| 229 | parser.add_argument( | ||
| 230 | "--adam_weight_decay", | ||
| 231 | type=float, | ||
| 232 | default=1e-2, | ||
| 233 | help="Weight decay to use." | ||
| 234 | ) | ||
| 235 | parser.add_argument( | ||
| 236 | "--adam_epsilon", | ||
| 237 | type=float, | ||
| 238 | default=1e-08, | ||
| 239 | help="Epsilon value for the Adam optimizer" | ||
| 240 | ) | ||
| 241 | parser.add_argument( | ||
| 242 | "--mixed_precision", | ||
| 243 | type=str, | ||
| 244 | default="no", | ||
| 245 | choices=["no", "fp16", "bf16"], | ||
| 246 | help=( | ||
| 247 | "Whether to use mixed precision. Choose" | ||
| 248 | "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | ||
| 249 | "and an Nvidia Ampere GPU." | ||
| 250 | ), | ||
| 251 | ) | ||
| 252 | parser.add_argument( | ||
| 253 | "--sample_frequency", | ||
| 254 | type=int, | ||
| 255 | default=1, | ||
| 256 | help="How often to save a checkpoint and sample image", | ||
| 257 | ) | ||
| 258 | parser.add_argument( | ||
| 259 | "--sample_image_size", | ||
| 260 | type=int, | ||
| 261 | default=768, | ||
| 262 | help="Size of sample images", | ||
| 263 | ) | ||
| 264 | parser.add_argument( | ||
| 265 | "--sample_batches", | ||
| 266 | type=int, | ||
| 267 | default=1, | ||
| 268 | help="Number of sample batches to generate per checkpoint", | ||
| 269 | ) | ||
| 270 | parser.add_argument( | ||
| 271 | "--sample_batch_size", | ||
| 272 | type=int, | ||
| 273 | default=1, | ||
| 274 | help="Number of samples to generate per batch", | ||
| 275 | ) | ||
| 276 | parser.add_argument( | ||
| 277 | "--valid_set_size", | ||
| 278 | type=int, | ||
| 279 | default=None, | ||
| 280 | help="Number of images in the validation dataset." | ||
| 281 | ) | ||
| 282 | parser.add_argument( | ||
| 283 | "--train_batch_size", | ||
| 284 | type=int, | ||
| 285 | default=1, | ||
| 286 | help="Batch size (per device) for the training dataloader." | ||
| 287 | ) | ||
| 288 | parser.add_argument( | ||
| 289 | "--sample_steps", | ||
| 290 | type=int, | ||
| 291 | default=15, | ||
| 292 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | ||
| 293 | ) | ||
| 294 | parser.add_argument( | ||
| 295 | "--prior_loss_weight", | ||
| 296 | type=float, | ||
| 297 | default=1.0, | ||
| 298 | help="The weight of prior preservation loss." | ||
| 299 | ) | ||
| 300 | parser.add_argument( | ||
| 301 | "--max_grad_norm", | ||
| 302 | default=1.0, | ||
| 303 | type=float, | ||
| 304 | help="Max gradient norm." | ||
| 305 | ) | ||
| 306 | parser.add_argument( | ||
| 307 | "--noise_timesteps", | ||
| 308 | type=int, | ||
| 309 | default=1000, | ||
| 310 | ) | ||
| 311 | parser.add_argument( | ||
| 312 | "--config", | ||
| 313 | type=str, | ||
| 314 | default=None, | ||
| 315 | help="Path to a JSON configuration file containing arguments for invoking this script." | ||
| 316 | ) | ||
| 317 | |||
| 318 | args = parser.parse_args() | ||
| 319 | if args.config is not None: | ||
| 320 | with open(args.config, 'rt') as f: | ||
| 321 | args = parser.parse_args( | ||
| 322 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
| 323 | |||
| 324 | if args.train_data_file is None: | ||
| 325 | raise ValueError("You must specify --train_data_file") | ||
| 326 | |||
| 327 | if args.pretrained_model_name_or_path is None: | ||
| 328 | raise ValueError("You must specify --pretrained_model_name_or_path") | ||
| 329 | |||
| 330 | if args.instance_identifier is None: | ||
| 331 | raise ValueError("You must specify --instance_identifier") | ||
| 332 | |||
| 333 | if isinstance(args.initializer_token, str): | ||
| 334 | args.initializer_token = [args.initializer_token] | ||
| 335 | |||
| 336 | if isinstance(args.placeholder_token, str): | ||
| 337 | args.placeholder_token = [args.placeholder_token] | ||
| 338 | |||
| 339 | if len(args.placeholder_token) == 0: | ||
| 340 | args.placeholder_token = [f"<*{i}>" for i in range(len(args.initializer_token))] | ||
| 341 | |||
| 342 | if len(args.placeholder_token) != len(args.initializer_token): | ||
| 343 | raise ValueError("Number of items in --placeholder_token and --initializer_token must match") | ||
| 344 | |||
| 345 | if args.output_dir is None: | ||
| 346 | raise ValueError("You must specify --output_dir") | ||
| 347 | |||
| 348 | return args | ||
| 349 | |||
| 350 | |||
| 351 | def save_args(basepath: Path, args, extra={}): | ||
| 352 | info = {"args": vars(args)} | ||
| 353 | info["args"].update(extra) | ||
| 354 | with open(basepath.joinpath("args.json"), "w") as f: | ||
| 355 | json.dump(info, f, indent=4) | ||
| 356 | |||
| 357 | |||
| 358 | def freeze_params(params): | ||
| 359 | for param in params: | ||
| 360 | param.requires_grad = False | ||
| 361 | |||
| 362 | |||
| 363 | def make_grid(images, rows, cols): | ||
| 364 | w, h = images[0].size | ||
| 365 | grid = Image.new('RGB', size=(cols*w, rows*h)) | ||
| 366 | for i, image in enumerate(images): | ||
| 367 | grid.paste(image, box=(i % cols*w, i//cols*h)) | ||
| 368 | return grid | ||
| 369 | |||
| 370 | |||
| 371 | class AverageMeter: | ||
| 372 | def __init__(self, name=None): | ||
| 373 | self.name = name | ||
| 374 | self.reset() | ||
| 375 | |||
| 376 | def reset(self): | ||
| 377 | self.sum = self.count = self.avg = 0 | ||
| 378 | |||
| 379 | def update(self, val, n=1): | ||
| 380 | self.sum += val * n | ||
| 381 | self.count += n | ||
| 382 | self.avg = self.sum / self.count | ||
| 383 | |||
| 384 | |||
| 385 | class Checkpointer: | ||
| 386 | def __init__( | ||
| 387 | self, | ||
| 388 | datamodule, | ||
| 389 | accelerator, | ||
| 390 | vae, | ||
| 391 | unet, | ||
| 392 | unet_lora, | ||
| 393 | tokenizer, | ||
| 394 | text_encoder, | ||
| 395 | scheduler, | ||
| 396 | output_dir: Path, | ||
| 397 | instance_identifier, | ||
| 398 | placeholder_token, | ||
| 399 | placeholder_token_id, | ||
| 400 | sample_image_size, | ||
| 401 | sample_batches, | ||
| 402 | sample_batch_size, | ||
| 403 | seed | ||
| 404 | ): | ||
| 405 | self.datamodule = datamodule | ||
| 406 | self.accelerator = accelerator | ||
| 407 | self.vae = vae | ||
| 408 | self.unet = unet | ||
| 409 | self.unet_lora = unet_lora | ||
| 410 | self.tokenizer = tokenizer | ||
| 411 | self.text_encoder = text_encoder | ||
| 412 | self.scheduler = scheduler | ||
| 413 | self.output_dir = output_dir | ||
| 414 | self.instance_identifier = instance_identifier | ||
| 415 | self.placeholder_token = placeholder_token | ||
| 416 | self.placeholder_token_id = placeholder_token_id | ||
| 417 | self.sample_image_size = sample_image_size | ||
| 418 | self.seed = seed or torch.random.seed() | ||
| 419 | self.sample_batches = sample_batches | ||
| 420 | self.sample_batch_size = sample_batch_size | ||
| 421 | |||
| 422 | @torch.no_grad() | ||
| 423 | def save_model(self): | ||
| 424 | print("Saving model...") | ||
| 425 | |||
| 426 | unet_lora = self.accelerator.unwrap_model(self.unet_lora) | ||
| 427 | unet_lora.save_pretrained(self.output_dir.joinpath("model")) | ||
| 428 | |||
| 429 | del unet_lora | ||
| 430 | |||
| 431 | if torch.cuda.is_available(): | ||
| 432 | torch.cuda.empty_cache() | ||
| 433 | |||
| 434 | @torch.no_grad() | ||
| 435 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
| 436 | samples_path = Path(self.output_dir).joinpath("samples") | ||
| 437 | |||
| 438 | unet = self.accelerator.unwrap_model(self.unet) | ||
| 439 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 440 | |||
| 441 | pipeline = VlpnStableDiffusion( | ||
| 442 | text_encoder=text_encoder, | ||
| 443 | vae=self.vae, | ||
| 444 | unet=unet, | ||
| 445 | tokenizer=self.tokenizer, | ||
| 446 | scheduler=self.scheduler, | ||
| 447 | ).to(self.accelerator.device) | ||
| 448 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 449 | |||
| 450 | train_data = self.datamodule.train_dataloader() | ||
| 451 | val_data = self.datamodule.val_dataloader() | ||
| 452 | |||
| 453 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) | ||
| 454 | stable_latents = torch.randn( | ||
| 455 | (self.sample_batch_size, pipeline.unet.in_channels, self.sample_image_size // 8, self.sample_image_size // 8), | ||
| 456 | device=pipeline.device, | ||
| 457 | generator=generator, | ||
| 458 | ) | ||
| 459 | |||
| 460 | with torch.autocast("cuda"), torch.inference_mode(): | ||
| 461 | for pool, data, latents in [("stable", val_data, stable_latents), ("val", val_data, None), ("train", train_data, None)]: | ||
| 462 | all_samples = [] | ||
| 463 | file_path = samples_path.joinpath(pool, f"step_{step}.jpg") | ||
| 464 | file_path.parent.mkdir(parents=True, exist_ok=True) | ||
| 465 | |||
| 466 | data_enum = enumerate(data) | ||
| 467 | |||
| 468 | batches = [ | ||
| 469 | batch | ||
| 470 | for j, batch in data_enum | ||
| 471 | if j * data.batch_size < self.sample_batch_size * self.sample_batches | ||
| 472 | ] | ||
| 473 | prompts = [ | ||
| 474 | prompt.format(identifier=self.instance_identifier) | ||
| 475 | for batch in batches | ||
| 476 | for prompt in batch["prompts"] | ||
| 477 | ] | ||
| 478 | nprompts = [ | ||
| 479 | prompt | ||
| 480 | for batch in batches | ||
| 481 | for prompt in batch["nprompts"] | ||
| 482 | ] | ||
| 483 | |||
| 484 | for i in range(self.sample_batches): | ||
| 485 | prompt = prompts[i * self.sample_batch_size:(i + 1) * self.sample_batch_size] | ||
| 486 | nprompt = nprompts[i * self.sample_batch_size:(i + 1) * self.sample_batch_size] | ||
| 487 | |||
| 488 | samples = pipeline( | ||
| 489 | prompt=prompt, | ||
| 490 | negative_prompt=nprompt, | ||
| 491 | height=self.sample_image_size, | ||
| 492 | width=self.sample_image_size, | ||
| 493 | image=latents[:len(prompt)] if latents is not None else None, | ||
| 494 | generator=generator if latents is not None else None, | ||
| 495 | guidance_scale=guidance_scale, | ||
| 496 | eta=eta, | ||
| 497 | num_inference_steps=num_inference_steps, | ||
| 498 | output_type='pil' | ||
| 499 | ).images | ||
| 500 | |||
| 501 | all_samples += samples | ||
| 502 | |||
| 503 | del samples | ||
| 504 | |||
| 505 | image_grid = make_grid(all_samples, self.sample_batches, self.sample_batch_size) | ||
| 506 | image_grid.save(file_path, quality=85) | ||
| 507 | |||
| 508 | del all_samples | ||
| 509 | del image_grid | ||
| 510 | |||
| 511 | del unet | ||
| 512 | del text_encoder | ||
| 513 | del pipeline | ||
| 514 | del generator | ||
| 515 | del stable_latents | ||
| 516 | |||
| 517 | if torch.cuda.is_available(): | ||
| 518 | torch.cuda.empty_cache() | ||
| 519 | |||
| 520 | |||
| 521 | def main(): | ||
| 522 | args = parse_args() | ||
| 523 | |||
| 524 | instance_identifier = args.instance_identifier | ||
| 525 | |||
| 526 | if len(args.placeholder_token) != 0: | ||
| 527 | instance_identifier = instance_identifier.format(args.placeholder_token[0]) | ||
| 528 | |||
| 529 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 530 | basepath = Path(args.output_dir).joinpath(slugify(instance_identifier), now) | ||
| 531 | basepath.mkdir(parents=True, exist_ok=True) | ||
| 532 | |||
| 533 | accelerator = Accelerator( | ||
| 534 | log_with=LoggerType.TENSORBOARD, | ||
| 535 | logging_dir=f"{basepath}", | ||
| 536 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 537 | mixed_precision=args.mixed_precision | ||
| 538 | ) | ||
| 539 | |||
| 540 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
| 541 | |||
| 542 | args.seed = args.seed or (torch.random.seed() >> 32) | ||
| 543 | set_seed(args.seed) | ||
| 544 | |||
| 545 | save_args(basepath, args) | ||
| 546 | |||
| 547 | # Load the tokenizer and add the placeholder token as a additional special token | ||
| 548 | if args.tokenizer_name: | ||
| 549 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
| 550 | elif args.pretrained_model_name_or_path: | ||
| 551 | tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') | ||
| 552 | |||
| 553 | # Load models and create wrapper for stable diffusion | ||
| 554 | text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') | ||
| 555 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') | ||
| 556 | unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') | ||
| 557 | noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder='scheduler') | ||
| 558 | checkpoint_scheduler = DPMSolverMultistepScheduler.from_pretrained( | ||
| 559 | args.pretrained_model_name_or_path, subfolder='scheduler') | ||
| 560 | |||
| 561 | unet_lora = LoraAttention() | ||
| 562 | |||
| 563 | vae.enable_slicing() | ||
| 564 | vae.set_use_memory_efficient_attention_xformers(True) | ||
| 565 | unet.set_use_memory_efficient_attention_xformers(True) | ||
| 566 | unet.set_attn_processor(unet_lora) | ||
| 567 | |||
| 568 | if args.gradient_checkpointing: | ||
| 569 | unet.enable_gradient_checkpointing() | ||
| 570 | text_encoder.gradient_checkpointing_enable() | ||
| 571 | |||
| 572 | # Freeze text_encoder and vae | ||
| 573 | vae.requires_grad_(False) | ||
| 574 | unet.requires_grad_(False) | ||
| 575 | |||
| 576 | if args.embeddings_dir is not None: | ||
| 577 | embeddings_dir = Path(args.embeddings_dir) | ||
| 578 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
| 579 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
| 580 | added_tokens = load_text_embeddings(tokenizer, text_encoder, embeddings_dir) | ||
| 581 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {added_tokens}") | ||
| 582 | |||
| 583 | if len(args.placeholder_token) != 0: | ||
| 584 | # Convert the initializer_token, placeholder_token to ids | ||
| 585 | initializer_token_ids = torch.stack([ | ||
| 586 | torch.tensor(tokenizer.encode(token, add_special_tokens=False)[:1]) | ||
| 587 | for token in args.initializer_token | ||
| 588 | ]) | ||
| 589 | |||
| 590 | num_added_tokens = tokenizer.add_tokens(args.placeholder_token) | ||
| 591 | print(f"Added {num_added_tokens} new tokens.") | ||
| 592 | |||
| 593 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | ||
| 594 | |||
| 595 | # Resize the token embeddings as we are adding new special tokens to the tokenizer | ||
| 596 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
| 597 | |||
| 598 | token_embeds = text_encoder.get_input_embeddings().weight.data | ||
| 599 | original_token_embeds = token_embeds.clone().to(accelerator.device) | ||
| 600 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | ||
| 601 | |||
| 602 | for (token_id, embeddings) in zip(placeholder_token_id, initializer_token_embeddings): | ||
| 603 | token_embeds[token_id] = embeddings | ||
| 604 | else: | ||
| 605 | placeholder_token_id = [] | ||
| 606 | |||
| 607 | print(f"Training added text embeddings") | ||
| 608 | |||
| 609 | freeze_params(itertools.chain( | ||
| 610 | text_encoder.text_model.encoder.parameters(), | ||
| 611 | text_encoder.text_model.final_layer_norm.parameters(), | ||
| 612 | text_encoder.text_model.embeddings.position_embedding.parameters(), | ||
| 613 | )) | ||
| 614 | |||
| 615 | index_fixed_tokens = torch.arange(len(tokenizer)) | ||
| 616 | index_fixed_tokens = index_fixed_tokens[~torch.isin(index_fixed_tokens, torch.tensor(placeholder_token_id))] | ||
| 617 | |||
| 618 | prompt_processor = PromptProcessor(tokenizer, text_encoder) | ||
| 619 | |||
| 620 | if args.scale_lr: | ||
| 621 | args.learning_rate_unet = ( | ||
| 622 | args.learning_rate_unet * args.gradient_accumulation_steps * | ||
| 623 | args.train_batch_size * accelerator.num_processes | ||
| 624 | ) | ||
| 625 | |||
| 626 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
| 627 | if args.use_8bit_adam: | ||
| 628 | try: | ||
| 629 | import bitsandbytes as bnb | ||
| 630 | except ImportError: | ||
| 631 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
| 632 | |||
| 633 | optimizer_class = bnb.optim.AdamW8bit | ||
| 634 | else: | ||
| 635 | optimizer_class = torch.optim.AdamW | ||
| 636 | |||
| 637 | # Initialize the optimizer | ||
| 638 | optimizer = optimizer_class( | ||
| 639 | [ | ||
| 640 | { | ||
| 641 | 'params': unet_lora.parameters(), | ||
| 642 | 'lr': args.learning_rate_unet, | ||
| 643 | }, | ||
| 644 | ], | ||
| 645 | betas=(args.adam_beta1, args.adam_beta2), | ||
| 646 | weight_decay=args.adam_weight_decay, | ||
| 647 | eps=args.adam_epsilon, | ||
| 648 | ) | ||
| 649 | |||
| 650 | weight_dtype = torch.float32 | ||
| 651 | if args.mixed_precision == "fp16": | ||
| 652 | weight_dtype = torch.float16 | ||
| 653 | elif args.mixed_precision == "bf16": | ||
| 654 | weight_dtype = torch.bfloat16 | ||
| 655 | |||
| 656 | def collate_fn(examples): | ||
| 657 | prompts = [example["prompts"] for example in examples] | ||
| 658 | nprompts = [example["nprompts"] for example in examples] | ||
| 659 | input_ids = [example["instance_prompt_ids"] for example in examples] | ||
| 660 | pixel_values = [example["instance_images"] for example in examples] | ||
| 661 | |||
| 662 | # concat class and instance examples for prior preservation | ||
| 663 | if args.num_class_images != 0 and "class_prompt_ids" in examples[0]: | ||
| 664 | input_ids += [example["class_prompt_ids"] for example in examples] | ||
| 665 | pixel_values += [example["class_images"] for example in examples] | ||
| 666 | |||
| 667 | pixel_values = torch.stack(pixel_values) | ||
| 668 | pixel_values = pixel_values.to(dtype=weight_dtype, memory_format=torch.contiguous_format) | ||
| 669 | |||
| 670 | inputs = prompt_processor.unify_input_ids(input_ids) | ||
| 671 | |||
| 672 | batch = { | ||
| 673 | "prompts": prompts, | ||
| 674 | "nprompts": nprompts, | ||
| 675 | "input_ids": inputs.input_ids, | ||
| 676 | "pixel_values": pixel_values, | ||
| 677 | "attention_mask": inputs.attention_mask, | ||
| 678 | } | ||
| 679 | return batch | ||
| 680 | |||
| 681 | datamodule = CSVDataModule( | ||
| 682 | data_file=args.train_data_file, | ||
| 683 | batch_size=args.train_batch_size, | ||
| 684 | prompt_processor=prompt_processor, | ||
| 685 | instance_identifier=instance_identifier, | ||
| 686 | class_identifier=args.class_identifier, | ||
| 687 | class_subdir="cls", | ||
| 688 | num_class_images=args.num_class_images, | ||
| 689 | size=args.resolution, | ||
| 690 | repeats=args.repeats, | ||
| 691 | mode=args.mode, | ||
| 692 | dropout=args.tag_dropout, | ||
| 693 | center_crop=args.center_crop, | ||
| 694 | template_key=args.train_data_template, | ||
| 695 | valid_set_size=args.valid_set_size, | ||
| 696 | num_workers=args.dataloader_num_workers, | ||
| 697 | collate_fn=collate_fn | ||
| 698 | ) | ||
| 699 | |||
| 700 | datamodule.prepare_data() | ||
| 701 | datamodule.setup() | ||
| 702 | |||
| 703 | if args.num_class_images != 0: | ||
| 704 | missing_data = [item for item in datamodule.data_train if not item.class_image_path.exists()] | ||
| 705 | |||
| 706 | if len(missing_data) != 0: | ||
| 707 | batched_data = [ | ||
| 708 | missing_data[i:i+args.sample_batch_size] | ||
| 709 | for i in range(0, len(missing_data), args.sample_batch_size) | ||
| 710 | ] | ||
| 711 | |||
| 712 | pipeline = VlpnStableDiffusion( | ||
| 713 | text_encoder=text_encoder, | ||
| 714 | vae=vae, | ||
| 715 | unet=unet, | ||
| 716 | tokenizer=tokenizer, | ||
| 717 | scheduler=checkpoint_scheduler, | ||
| 718 | ).to(accelerator.device) | ||
| 719 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 720 | |||
| 721 | with torch.autocast("cuda"), torch.inference_mode(): | ||
| 722 | for batch in batched_data: | ||
| 723 | image_name = [item.class_image_path for item in batch] | ||
| 724 | prompt = [item.prompt.format(identifier=args.class_identifier) for item in batch] | ||
| 725 | nprompt = [item.nprompt for item in batch] | ||
| 726 | |||
| 727 | images = pipeline( | ||
| 728 | prompt=prompt, | ||
| 729 | negative_prompt=nprompt, | ||
| 730 | num_inference_steps=args.sample_steps | ||
| 731 | ).images | ||
| 732 | |||
| 733 | for i, image in enumerate(images): | ||
| 734 | image.save(image_name[i]) | ||
| 735 | |||
| 736 | del pipeline | ||
| 737 | |||
| 738 | if torch.cuda.is_available(): | ||
| 739 | torch.cuda.empty_cache() | ||
| 740 | |||
| 741 | train_dataloader = datamodule.train_dataloader() | ||
| 742 | val_dataloader = datamodule.val_dataloader() | ||
| 743 | |||
| 744 | # Scheduler and math around the number of training steps. | ||
| 745 | overrode_max_train_steps = False | ||
| 746 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
| 747 | if args.max_train_steps is None: | ||
| 748 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 749 | overrode_max_train_steps = True | ||
| 750 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
| 751 | |||
| 752 | warmup_steps = args.lr_warmup_epochs * num_update_steps_per_epoch * args.gradient_accumulation_steps | ||
| 753 | |||
| 754 | if args.lr_scheduler == "one_cycle": | ||
| 755 | lr_scheduler = get_one_cycle_schedule( | ||
| 756 | optimizer=optimizer, | ||
| 757 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
| 758 | ) | ||
| 759 | elif args.lr_scheduler == "cosine_with_restarts": | ||
| 760 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | ||
| 761 | optimizer=optimizer, | ||
| 762 | num_warmup_steps=warmup_steps, | ||
| 763 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
| 764 | num_cycles=args.lr_cycles or math.ceil(math.sqrt( | ||
| 765 | ((args.max_train_steps - warmup_steps) / num_update_steps_per_epoch))), | ||
| 766 | ) | ||
| 767 | else: | ||
| 768 | lr_scheduler = get_scheduler( | ||
| 769 | args.lr_scheduler, | ||
| 770 | optimizer=optimizer, | ||
| 771 | num_warmup_steps=warmup_steps, | ||
| 772 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
| 773 | ) | ||
| 774 | |||
| 775 | unet_lora, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 776 | unet_lora, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
| 777 | ) | ||
| 778 | |||
| 779 | # Move text_encoder and vae to device | ||
| 780 | vae.to(accelerator.device, dtype=weight_dtype) | ||
| 781 | unet.to(accelerator.device, dtype=weight_dtype) | ||
| 782 | text_encoder.to(accelerator.device, dtype=weight_dtype) | ||
| 783 | |||
| 784 | # Keep text_encoder and vae in eval mode as we don't train these | ||
| 785 | vae.eval() | ||
| 786 | unet.eval() | ||
| 787 | text_encoder.eval() | ||
| 788 | |||
| 789 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
| 790 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
| 791 | if overrode_max_train_steps: | ||
| 792 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 793 | |||
| 794 | num_val_steps_per_epoch = len(val_dataloader) | ||
| 795 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
| 796 | val_steps = num_val_steps_per_epoch * num_epochs | ||
| 797 | |||
| 798 | # We need to initialize the trackers we use, and also store our configuration. | ||
| 799 | # The trackers initializes automatically on the main process. | ||
| 800 | if accelerator.is_main_process: | ||
| 801 | config = vars(args).copy() | ||
| 802 | config["initializer_token"] = " ".join(config["initializer_token"]) | ||
| 803 | config["placeholder_token"] = " ".join(config["placeholder_token"]) | ||
| 804 | accelerator.init_trackers("dreambooth", config=config) | ||
| 805 | |||
| 806 | # Train! | ||
| 807 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
| 808 | |||
| 809 | logger.info("***** Running training *****") | ||
| 810 | logger.info(f" Num Epochs = {num_epochs}") | ||
| 811 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
| 812 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
| 813 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
| 814 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
| 815 | # Only show the progress bar once on each machine. | ||
| 816 | |||
| 817 | global_step = 0 | ||
| 818 | |||
| 819 | avg_loss = AverageMeter() | ||
| 820 | avg_acc = AverageMeter() | ||
| 821 | |||
| 822 | avg_loss_val = AverageMeter() | ||
| 823 | avg_acc_val = AverageMeter() | ||
| 824 | |||
| 825 | max_acc_val = 0.0 | ||
| 826 | |||
| 827 | checkpointer = Checkpointer( | ||
| 828 | datamodule=datamodule, | ||
| 829 | accelerator=accelerator, | ||
| 830 | vae=vae, | ||
| 831 | unet=unet, | ||
| 832 | tokenizer=tokenizer, | ||
| 833 | text_encoder=text_encoder, | ||
| 834 | scheduler=checkpoint_scheduler, | ||
| 835 | output_dir=basepath, | ||
| 836 | instance_identifier=instance_identifier, | ||
| 837 | placeholder_token=args.placeholder_token, | ||
| 838 | placeholder_token_id=placeholder_token_id, | ||
| 839 | sample_image_size=args.sample_image_size, | ||
| 840 | sample_batch_size=args.sample_batch_size, | ||
| 841 | sample_batches=args.sample_batches, | ||
| 842 | seed=args.seed | ||
| 843 | ) | ||
| 844 | |||
| 845 | if accelerator.is_main_process: | ||
| 846 | checkpointer.save_samples(0, args.sample_steps) | ||
| 847 | |||
| 848 | local_progress_bar = tqdm( | ||
| 849 | range(num_update_steps_per_epoch + num_val_steps_per_epoch), | ||
| 850 | disable=not accelerator.is_local_main_process, | ||
| 851 | dynamic_ncols=True | ||
| 852 | ) | ||
| 853 | local_progress_bar.set_description("Epoch X / Y") | ||
| 854 | |||
| 855 | global_progress_bar = tqdm( | ||
| 856 | range(args.max_train_steps + val_steps), | ||
| 857 | disable=not accelerator.is_local_main_process, | ||
| 858 | dynamic_ncols=True | ||
| 859 | ) | ||
| 860 | global_progress_bar.set_description("Total progress") | ||
| 861 | |||
| 862 | try: | ||
| 863 | for epoch in range(num_epochs): | ||
| 864 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
| 865 | local_progress_bar.reset() | ||
| 866 | |||
| 867 | unet_lora.train() | ||
| 868 | |||
| 869 | for step, batch in enumerate(train_dataloader): | ||
| 870 | with accelerator.accumulate(unet_lora): | ||
| 871 | # Convert images to latent space | ||
| 872 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
| 873 | latents = latents * 0.18215 | ||
| 874 | |||
| 875 | # Sample noise that we'll add to the latents | ||
| 876 | noise = torch.randn_like(latents) | ||
| 877 | bsz = latents.shape[0] | ||
| 878 | # Sample a random timestep for each image | ||
| 879 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
| 880 | (bsz,), device=latents.device) | ||
| 881 | timesteps = timesteps.long() | ||
| 882 | |||
| 883 | # Add noise to the latents according to the noise magnitude at each timestep | ||
| 884 | # (this is the forward diffusion process) | ||
| 885 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 886 | |||
| 887 | # Get the text embedding for conditioning | ||
| 888 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | ||
| 889 | |||
| 890 | # Predict the noise residual | ||
| 891 | model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 892 | |||
| 893 | # Get the target for loss depending on the prediction type | ||
| 894 | if noise_scheduler.config.prediction_type == "epsilon": | ||
| 895 | target = noise | ||
| 896 | elif noise_scheduler.config.prediction_type == "v_prediction": | ||
| 897 | target = noise_scheduler.get_velocity(latents, noise, timesteps) | ||
| 898 | else: | ||
| 899 | raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | ||
| 900 | |||
| 901 | if args.num_class_images != 0: | ||
| 902 | # Chunk the noise and model_pred into two parts and compute the loss on each part separately. | ||
| 903 | model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | ||
| 904 | target, target_prior = torch.chunk(target, 2, dim=0) | ||
| 905 | |||
| 906 | # Compute instance loss | ||
| 907 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() | ||
| 908 | |||
| 909 | # Compute prior loss | ||
| 910 | prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") | ||
| 911 | |||
| 912 | # Add the prior loss to the instance loss. | ||
| 913 | loss = loss + args.prior_loss_weight * prior_loss | ||
| 914 | else: | ||
| 915 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 916 | |||
| 917 | acc = (model_pred == latents).float().mean() | ||
| 918 | |||
| 919 | accelerator.backward(loss) | ||
| 920 | |||
| 921 | if accelerator.sync_gradients: | ||
| 922 | accelerator.clip_grad_norm_(unet_lora.parameters(), args.max_grad_norm) | ||
| 923 | |||
| 924 | optimizer.step() | ||
| 925 | if not accelerator.optimizer_step_was_skipped: | ||
| 926 | lr_scheduler.step() | ||
| 927 | optimizer.zero_grad(set_to_none=True) | ||
| 928 | |||
| 929 | with torch.no_grad(): | ||
| 930 | text_encoder.get_input_embeddings( | ||
| 931 | ).weight[index_fixed_tokens] = original_token_embeds[index_fixed_tokens] | ||
| 932 | |||
| 933 | avg_loss.update(loss.detach_(), bsz) | ||
| 934 | avg_acc.update(acc.detach_(), bsz) | ||
| 935 | |||
| 936 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
| 937 | if accelerator.sync_gradients: | ||
| 938 | local_progress_bar.update(1) | ||
| 939 | global_progress_bar.update(1) | ||
| 940 | |||
| 941 | global_step += 1 | ||
| 942 | |||
| 943 | logs = { | ||
| 944 | "train/loss": avg_loss.avg.item(), | ||
| 945 | "train/acc": avg_acc.avg.item(), | ||
| 946 | "train/cur_loss": loss.item(), | ||
| 947 | "train/cur_acc": acc.item(), | ||
| 948 | "lr/unet": lr_scheduler.get_last_lr()[0], | ||
| 949 | "lr/text": lr_scheduler.get_last_lr()[1] | ||
| 950 | } | ||
| 951 | |||
| 952 | accelerator.log(logs, step=global_step) | ||
| 953 | |||
| 954 | local_progress_bar.set_postfix(**logs) | ||
| 955 | |||
| 956 | if global_step >= args.max_train_steps: | ||
| 957 | break | ||
| 958 | |||
| 959 | accelerator.wait_for_everyone() | ||
| 960 | |||
| 961 | unet_lora.eval() | ||
| 962 | |||
| 963 | with torch.inference_mode(): | ||
| 964 | for step, batch in enumerate(val_dataloader): | ||
| 965 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
| 966 | latents = latents * 0.18215 | ||
| 967 | |||
| 968 | noise = torch.randn_like(latents) | ||
| 969 | bsz = latents.shape[0] | ||
| 970 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
| 971 | (bsz,), device=latents.device) | ||
| 972 | timesteps = timesteps.long() | ||
| 973 | |||
| 974 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 975 | |||
| 976 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | ||
| 977 | |||
| 978 | model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 979 | |||
| 980 | # Get the target for loss depending on the prediction type | ||
| 981 | if noise_scheduler.config.prediction_type == "epsilon": | ||
| 982 | target = noise | ||
| 983 | elif noise_scheduler.config.prediction_type == "v_prediction": | ||
| 984 | target = noise_scheduler.get_velocity(latents, noise, timesteps) | ||
| 985 | else: | ||
| 986 | raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | ||
| 987 | |||
| 988 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 989 | |||
| 990 | acc = (model_pred == latents).float().mean() | ||
| 991 | |||
| 992 | avg_loss_val.update(loss.detach_(), bsz) | ||
| 993 | avg_acc_val.update(acc.detach_(), bsz) | ||
| 994 | |||
| 995 | if accelerator.sync_gradients: | ||
| 996 | local_progress_bar.update(1) | ||
| 997 | global_progress_bar.update(1) | ||
| 998 | |||
| 999 | logs = { | ||
| 1000 | "val/loss": avg_loss_val.avg.item(), | ||
| 1001 | "val/acc": avg_acc_val.avg.item(), | ||
| 1002 | "val/cur_loss": loss.item(), | ||
| 1003 | "val/cur_acc": acc.item(), | ||
| 1004 | } | ||
| 1005 | local_progress_bar.set_postfix(**logs) | ||
| 1006 | |||
| 1007 | accelerator.log({ | ||
| 1008 | "val/loss": avg_loss_val.avg.item(), | ||
| 1009 | "val/acc": avg_acc_val.avg.item(), | ||
| 1010 | }, step=global_step) | ||
| 1011 | |||
| 1012 | local_progress_bar.clear() | ||
| 1013 | global_progress_bar.clear() | ||
| 1014 | |||
| 1015 | if avg_acc_val.avg.item() > max_acc_val: | ||
| 1016 | accelerator.print( | ||
| 1017 | f"Global step {global_step}: Validation accuracy reached new maximum: {max_acc_val:.2e} -> {avg_acc_val.avg.item():.2e}") | ||
| 1018 | max_acc_val = avg_acc_val.avg.item() | ||
| 1019 | |||
| 1020 | if accelerator.is_main_process: | ||
| 1021 | if (epoch + 1) % args.sample_frequency == 0: | ||
| 1022 | checkpointer.save_samples(global_step, args.sample_steps) | ||
| 1023 | |||
| 1024 | # Create the pipeline using using the trained modules and save it. | ||
| 1025 | if accelerator.is_main_process: | ||
| 1026 | print("Finished! Saving final checkpoint and resume state.") | ||
| 1027 | checkpointer.save_model() | ||
| 1028 | |||
| 1029 | accelerator.end_training() | ||
| 1030 | |||
| 1031 | except KeyboardInterrupt: | ||
| 1032 | if accelerator.is_main_process: | ||
| 1033 | print("Interrupted, saving checkpoint and resume state...") | ||
| 1034 | checkpointer.save_model() | ||
| 1035 | accelerator.end_training() | ||
| 1036 | quit() | ||
| 1037 | |||
| 1038 | |||
| 1039 | if __name__ == "__main__": | ||
| 1040 | main() | ||
diff --git a/train_ti.py b/train_ti.py index 5c0299e..9616db6 100644 --- a/train_ti.py +++ b/train_ti.py | |||
| @@ -24,7 +24,6 @@ from slugify import slugify | |||
| 24 | 24 | ||
| 25 | from common import load_text_embeddings, load_text_embedding | 25 | from common import load_text_embeddings, load_text_embedding |
| 26 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 26 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 27 | from pipelines.util import set_use_memory_efficient_attention_xformers | ||
| 28 | from data.csv import CSVDataModule, CSVDataItem | 27 | from data.csv import CSVDataModule, CSVDataItem |
| 29 | from training.optimization import get_one_cycle_schedule | 28 | from training.optimization import get_one_cycle_schedule |
| 30 | from models.clip.prompt import PromptProcessor | 29 | from models.clip.prompt import PromptProcessor |
| @@ -557,8 +556,8 @@ def main(): | |||
| 557 | args.pretrained_model_name_or_path, subfolder='scheduler') | 556 | args.pretrained_model_name_or_path, subfolder='scheduler') |
| 558 | 557 | ||
| 559 | vae.enable_slicing() | 558 | vae.enable_slicing() |
| 560 | set_use_memory_efficient_attention_xformers(unet, True) | 559 | vae.set_use_memory_efficient_attention_xformers(True) |
| 561 | set_use_memory_efficient_attention_xformers(vae, True) | 560 | unet.set_use_memory_efficient_attention_xformers(True) |
| 562 | 561 | ||
| 563 | if args.gradient_checkpointing: | 562 | if args.gradient_checkpointing: |
| 564 | unet.enable_gradient_checkpointing() | 563 | unet.enable_gradient_checkpointing() |
diff --git a/training/lora.py b/training/lora.py new file mode 100644 index 0000000..d8dc147 --- /dev/null +++ b/training/lora.py | |||
| @@ -0,0 +1,27 @@ | |||
| 1 | import torch.nn as nn | ||
| 2 | from diffusers import ModelMixin, ConfigMixin, XFormersCrossAttnProcessor, register_to_config | ||
| 3 | |||
| 4 | |||
| 5 | class LoraAttention(ModelMixin, ConfigMixin): | ||
| 6 | @register_to_config | ||
| 7 | def __init__(self, in_features, out_features, r=4): | ||
| 8 | super().__init__() | ||
| 9 | |||
| 10 | if r > min(in_features, out_features): | ||
| 11 | raise ValueError( | ||
| 12 | f"LoRA rank {r} must be less or equal than {min(in_features, out_features)}" | ||
| 13 | ) | ||
| 14 | |||
| 15 | self.lora_down = nn.Linear(in_features, r, bias=False) | ||
| 16 | self.lora_up = nn.Linear(r, out_features, bias=False) | ||
| 17 | self.scale = 1.0 | ||
| 18 | |||
| 19 | self.processor = XFormersCrossAttnProcessor() | ||
| 20 | |||
| 21 | nn.init.normal_(self.lora_down.weight, std=1 / r**2) | ||
| 22 | nn.init.zeros_(self.lora_up.weight) | ||
| 23 | |||
| 24 | def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None): | ||
| 25 | hidden_states = self.processor(attn, hidden_states, encoder_hidden_states, attention_mask, number) | ||
| 26 | hidden_states = hidden_states + self.lora_up(self.lora_down(hidden_states)) * self.scale | ||
| 27 | return hidden_states | ||
