diff options
-rw-r--r-- | dreambooth.py | 48 | ||||
-rw-r--r-- | dreambooth_plus.py | 1023 |
2 files changed, 42 insertions, 1029 deletions
diff --git a/dreambooth.py b/dreambooth.py index d1cf535..da8399f 100644 --- a/dreambooth.py +++ b/dreambooth.py | |||
@@ -69,6 +69,18 @@ def parse_args(): | |||
69 | help="A token to use as a placeholder for the concept.", | 69 | help="A token to use as a placeholder for the concept.", |
70 | ) | 70 | ) |
71 | parser.add_argument( | 71 | parser.add_argument( |
72 | "--placeholder_token", | ||
73 | type=str, | ||
74 | default="<*>", | ||
75 | help="A token to use as a placeholder for the concept.", | ||
76 | ) | ||
77 | parser.add_argument( | ||
78 | "--initializer_token", | ||
79 | type=str, | ||
80 | default=None, | ||
81 | help="A token to use as initializer word." | ||
82 | ) | ||
83 | parser.add_argument( | ||
72 | "--num_class_images", | 84 | "--num_class_images", |
73 | type=int, | 85 | type=int, |
74 | default=400, | 86 | default=400, |
@@ -114,7 +126,7 @@ def parse_args(): | |||
114 | parser.add_argument( | 126 | parser.add_argument( |
115 | "--max_train_steps", | 127 | "--max_train_steps", |
116 | type=int, | 128 | type=int, |
117 | default=3600, | 129 | default=6000, |
118 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | 130 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
119 | ) | 131 | ) |
120 | parser.add_argument( | 132 | parser.add_argument( |
@@ -131,13 +143,13 @@ def parse_args(): | |||
131 | parser.add_argument( | 143 | parser.add_argument( |
132 | "--learning_rate_unet", | 144 | "--learning_rate_unet", |
133 | type=float, | 145 | type=float, |
134 | default=3e-6, | 146 | default=2e-6, |
135 | help="Initial learning rate (after the potential warmup period) to use.", | 147 | help="Initial learning rate (after the potential warmup period) to use.", |
136 | ) | 148 | ) |
137 | parser.add_argument( | 149 | parser.add_argument( |
138 | "--learning_rate_text", | 150 | "--learning_rate_text", |
139 | type=float, | 151 | type=float, |
140 | default=3e-6, | 152 | default=2e-6, |
141 | help="Initial learning rate (after the potential warmup period) to use.", | 153 | help="Initial learning rate (after the potential warmup period) to use.", |
142 | ) | 154 | ) |
143 | parser.add_argument( | 155 | parser.add_argument( |
@@ -476,8 +488,13 @@ class Checkpointer: | |||
476 | def main(): | 488 | def main(): |
477 | args = parse_args() | 489 | args = parse_args() |
478 | 490 | ||
491 | instance_identifier = args.instance_identifier | ||
492 | |||
493 | if args.placeholder_token is not None: | ||
494 | instance_identifier = instance_identifier.format(args.placeholder_token) | ||
495 | |||
479 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | 496 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") |
480 | basepath = Path(args.output_dir).joinpath(slugify(args.instance_identifier), now) | 497 | basepath = Path(args.output_dir).joinpath(slugify(instance_identifier), now) |
481 | basepath.mkdir(parents=True, exist_ok=True) | 498 | basepath.mkdir(parents=True, exist_ok=True) |
482 | 499 | ||
483 | accelerator = Accelerator( | 500 | accelerator = Accelerator( |
@@ -514,6 +531,25 @@ def main(): | |||
514 | device=accelerator.device | 531 | device=accelerator.device |
515 | ) if args.use_ema else None | 532 | ) if args.use_ema else None |
516 | 533 | ||
534 | if args.initializer_token is not None: | ||
535 | # Convert the initializer_token, placeholder_token to ids | ||
536 | initializer_token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) | ||
537 | print(f"Initializer token {args.initializer_token} maps to {len(initializer_token_ids)} embeddings.") | ||
538 | initializer_token_ids = torch.tensor(initializer_token_ids[:1]) | ||
539 | |||
540 | # Add the placeholder token in tokenizer | ||
541 | num_added_tokens = tokenizer.add_tokens(args.placeholder_token) | ||
542 | if num_added_tokens == 0: | ||
543 | print(f"Re-using existing token {args.placeholder_token}.") | ||
544 | else: | ||
545 | print(f"Training new token {args.placeholder_token}.") | ||
546 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | ||
547 | |||
548 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
549 | token_embeds = text_encoder.get_input_embeddings() | ||
550 | initializer_token_embeddings = token_embeds(initializer_token_ids) | ||
551 | token_embeds.weight.data[placeholder_token_id] = initializer_token_embeddings | ||
552 | |||
517 | prompt_processor = PromptProcessor(tokenizer, text_encoder) | 553 | prompt_processor = PromptProcessor(tokenizer, text_encoder) |
518 | 554 | ||
519 | if args.gradient_checkpointing: | 555 | if args.gradient_checkpointing: |
@@ -605,7 +641,7 @@ def main(): | |||
605 | data_file=args.train_data_file, | 641 | data_file=args.train_data_file, |
606 | batch_size=args.train_batch_size, | 642 | batch_size=args.train_batch_size, |
607 | prompt_processor=prompt_processor, | 643 | prompt_processor=prompt_processor, |
608 | instance_identifier=args.instance_identifier, | 644 | instance_identifier=instance_identifier, |
609 | class_identifier=args.class_identifier, | 645 | class_identifier=args.class_identifier, |
610 | class_subdir="cls", | 646 | class_subdir="cls", |
611 | num_class_images=args.num_class_images, | 647 | num_class_images=args.num_class_images, |
@@ -735,7 +771,7 @@ def main(): | |||
735 | tokenizer=tokenizer, | 771 | tokenizer=tokenizer, |
736 | text_encoder=text_encoder, | 772 | text_encoder=text_encoder, |
737 | output_dir=basepath, | 773 | output_dir=basepath, |
738 | instance_identifier=args.instance_identifier, | 774 | instance_identifier=instance_identifier, |
739 | sample_image_size=args.sample_image_size, | 775 | sample_image_size=args.sample_image_size, |
740 | sample_batch_size=args.sample_batch_size, | 776 | sample_batch_size=args.sample_batch_size, |
741 | sample_batches=args.sample_batches, | 777 | sample_batches=args.sample_batches, |
diff --git a/dreambooth_plus.py b/dreambooth_plus.py deleted file mode 100644 index 413abe3..0000000 --- a/dreambooth_plus.py +++ /dev/null | |||
@@ -1,1023 +0,0 @@ | |||
1 | import argparse | ||
2 | import itertools | ||
3 | import math | ||
4 | import os | ||
5 | import datetime | ||
6 | import logging | ||
7 | import json | ||
8 | from pathlib import Path | ||
9 | |||
10 | import numpy as np | ||
11 | import torch | ||
12 | import torch.nn.functional as F | ||
13 | import torch.utils.checkpoint | ||
14 | |||
15 | from accelerate import Accelerator | ||
16 | from accelerate.logging import get_logger | ||
17 | from accelerate.utils import LoggerType, set_seed | ||
18 | from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, UNet2DConditionModel | ||
19 | from diffusers.optimization import get_scheduler, get_cosine_with_hard_restarts_schedule_with_warmup | ||
20 | from diffusers.training_utils import EMAModel | ||
21 | from PIL import Image | ||
22 | from tqdm.auto import tqdm | ||
23 | from transformers import CLIPTextModel, CLIPTokenizer | ||
24 | from slugify import slugify | ||
25 | |||
26 | from schedulers.scheduling_euler_a import EulerAScheduler | ||
27 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
28 | from data.csv import CSVDataModule | ||
29 | from models.clip.prompt import PromptProcessor | ||
30 | |||
31 | logger = get_logger(__name__) | ||
32 | |||
33 | |||
34 | torch.backends.cuda.matmul.allow_tf32 = True | ||
35 | |||
36 | |||
37 | def parse_args(): | ||
38 | parser = argparse.ArgumentParser( | ||
39 | description="Simple example of a training script." | ||
40 | ) | ||
41 | parser.add_argument( | ||
42 | "--pretrained_model_name_or_path", | ||
43 | type=str, | ||
44 | default=None, | ||
45 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
46 | ) | ||
47 | parser.add_argument( | ||
48 | "--tokenizer_name", | ||
49 | type=str, | ||
50 | default=None, | ||
51 | help="Pretrained tokenizer name or path if not the same as model_name", | ||
52 | ) | ||
53 | parser.add_argument( | ||
54 | "--train_data_file", | ||
55 | type=str, | ||
56 | default=None, | ||
57 | help="A CSV file containing the training data." | ||
58 | ) | ||
59 | parser.add_argument( | ||
60 | "--instance_identifier", | ||
61 | type=str, | ||
62 | default=None, | ||
63 | help="A token to use as a placeholder for the concept.", | ||
64 | ) | ||
65 | parser.add_argument( | ||
66 | "--class_identifier", | ||
67 | type=str, | ||
68 | default=None, | ||
69 | help="A token to use as a placeholder for the concept.", | ||
70 | ) | ||
71 | parser.add_argument( | ||
72 | "--placeholder_token", | ||
73 | type=str, | ||
74 | default="<*>", | ||
75 | help="A token to use as a placeholder for the concept.", | ||
76 | ) | ||
77 | parser.add_argument( | ||
78 | "--initializer_token", | ||
79 | type=str, | ||
80 | default=None, | ||
81 | help="A token to use as initializer word." | ||
82 | ) | ||
83 | parser.add_argument( | ||
84 | "--num_class_images", | ||
85 | type=int, | ||
86 | default=400, | ||
87 | help="How many class images to generate." | ||
88 | ) | ||
89 | parser.add_argument( | ||
90 | "--repeats", | ||
91 | type=int, | ||
92 | default=1, | ||
93 | help="How many times to repeat the training data." | ||
94 | ) | ||
95 | parser.add_argument( | ||
96 | "--output_dir", | ||
97 | type=str, | ||
98 | default="output/dreambooth-plus", | ||
99 | help="The output directory where the model predictions and checkpoints will be written.", | ||
100 | ) | ||
101 | parser.add_argument( | ||
102 | "--seed", | ||
103 | type=int, | ||
104 | default=None, | ||
105 | help="A seed for reproducible training.") | ||
106 | parser.add_argument( | ||
107 | "--resolution", | ||
108 | type=int, | ||
109 | default=512, | ||
110 | help=( | ||
111 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
112 | " resolution" | ||
113 | ), | ||
114 | ) | ||
115 | parser.add_argument( | ||
116 | "--center_crop", | ||
117 | action="store_true", | ||
118 | help="Whether to center crop images before resizing to resolution" | ||
119 | ) | ||
120 | parser.add_argument( | ||
121 | "--num_train_epochs", | ||
122 | type=int, | ||
123 | default=100 | ||
124 | ) | ||
125 | parser.add_argument( | ||
126 | "--max_train_steps", | ||
127 | type=int, | ||
128 | default=4700, | ||
129 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | ||
130 | ) | ||
131 | parser.add_argument( | ||
132 | "--gradient_accumulation_steps", | ||
133 | type=int, | ||
134 | default=1, | ||
135 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
136 | ) | ||
137 | parser.add_argument( | ||
138 | "--gradient_checkpointing", | ||
139 | action="store_true", | ||
140 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | ||
141 | ) | ||
142 | parser.add_argument( | ||
143 | "--learning_rate_unet", | ||
144 | type=float, | ||
145 | default=2e-6, | ||
146 | help="Initial learning rate (after the potential warmup period) to use.", | ||
147 | ) | ||
148 | parser.add_argument( | ||
149 | "--learning_rate_text", | ||
150 | type=float, | ||
151 | default=2e-6, | ||
152 | help="Initial learning rate (after the potential warmup period) to use.", | ||
153 | ) | ||
154 | parser.add_argument( | ||
155 | "--scale_lr", | ||
156 | action="store_true", | ||
157 | default=True, | ||
158 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | ||
159 | ) | ||
160 | parser.add_argument( | ||
161 | "--lr_scheduler", | ||
162 | type=str, | ||
163 | default="cosine_with_restarts", | ||
164 | help=( | ||
165 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | ||
166 | ' "constant", "constant_with_warmup"]' | ||
167 | ), | ||
168 | ) | ||
169 | parser.add_argument( | ||
170 | "--lr_warmup_steps", | ||
171 | type=int, | ||
172 | default=300, | ||
173 | help="Number of steps for the warmup in the lr scheduler." | ||
174 | ) | ||
175 | parser.add_argument( | ||
176 | "--lr_cycles", | ||
177 | type=int, | ||
178 | default=None, | ||
179 | help="Number of restart cycles in the lr scheduler." | ||
180 | ) | ||
181 | parser.add_argument( | ||
182 | "--use_ema", | ||
183 | action="store_true", | ||
184 | default=True, | ||
185 | help="Whether to use EMA model." | ||
186 | ) | ||
187 | parser.add_argument( | ||
188 | "--ema_inv_gamma", | ||
189 | type=float, | ||
190 | default=1.0 | ||
191 | ) | ||
192 | parser.add_argument( | ||
193 | "--ema_power", | ||
194 | type=float, | ||
195 | default=9 / 10 | ||
196 | ) | ||
197 | parser.add_argument( | ||
198 | "--ema_max_decay", | ||
199 | type=float, | ||
200 | default=0.9999 | ||
201 | ) | ||
202 | parser.add_argument( | ||
203 | "--use_8bit_adam", | ||
204 | action="store_true", | ||
205 | default=True, | ||
206 | help="Whether or not to use 8-bit Adam from bitsandbytes." | ||
207 | ) | ||
208 | parser.add_argument( | ||
209 | "--adam_beta1", | ||
210 | type=float, | ||
211 | default=0.9, | ||
212 | help="The beta1 parameter for the Adam optimizer." | ||
213 | ) | ||
214 | parser.add_argument( | ||
215 | "--adam_beta2", | ||
216 | type=float, | ||
217 | default=0.999, | ||
218 | help="The beta2 parameter for the Adam optimizer." | ||
219 | ) | ||
220 | parser.add_argument( | ||
221 | "--adam_weight_decay", | ||
222 | type=float, | ||
223 | default=1e-2, | ||
224 | help="Weight decay to use." | ||
225 | ) | ||
226 | parser.add_argument( | ||
227 | "--adam_epsilon", | ||
228 | type=float, | ||
229 | default=1e-08, | ||
230 | help="Epsilon value for the Adam optimizer" | ||
231 | ) | ||
232 | parser.add_argument( | ||
233 | "--mixed_precision", | ||
234 | type=str, | ||
235 | default="no", | ||
236 | choices=["no", "fp16", "bf16"], | ||
237 | help=( | ||
238 | "Whether to use mixed precision. Choose" | ||
239 | "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | ||
240 | "and an Nvidia Ampere GPU." | ||
241 | ), | ||
242 | ) | ||
243 | parser.add_argument( | ||
244 | "--checkpoint_frequency", | ||
245 | type=int, | ||
246 | default=500, | ||
247 | help="How often to save a checkpoint and sample image", | ||
248 | ) | ||
249 | parser.add_argument( | ||
250 | "--sample_frequency", | ||
251 | type=int, | ||
252 | default=100, | ||
253 | help="How often to save a checkpoint and sample image", | ||
254 | ) | ||
255 | parser.add_argument( | ||
256 | "--sample_image_size", | ||
257 | type=int, | ||
258 | default=512, | ||
259 | help="Size of sample images", | ||
260 | ) | ||
261 | parser.add_argument( | ||
262 | "--sample_batches", | ||
263 | type=int, | ||
264 | default=1, | ||
265 | help="Number of sample batches to generate per checkpoint", | ||
266 | ) | ||
267 | parser.add_argument( | ||
268 | "--sample_batch_size", | ||
269 | type=int, | ||
270 | default=1, | ||
271 | help="Number of samples to generate per batch", | ||
272 | ) | ||
273 | parser.add_argument( | ||
274 | "--train_batch_size", | ||
275 | type=int, | ||
276 | default=1, | ||
277 | help="Batch size (per device) for the training dataloader." | ||
278 | ) | ||
279 | parser.add_argument( | ||
280 | "--sample_steps", | ||
281 | type=int, | ||
282 | default=30, | ||
283 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | ||
284 | ) | ||
285 | parser.add_argument( | ||
286 | "--prior_loss_weight", | ||
287 | type=float, | ||
288 | default=1.0, | ||
289 | help="The weight of prior preservation loss." | ||
290 | ) | ||
291 | parser.add_argument( | ||
292 | "--max_grad_norm", | ||
293 | default=1.0, | ||
294 | type=float, | ||
295 | help="Max gradient norm." | ||
296 | ) | ||
297 | parser.add_argument( | ||
298 | "--noise_timesteps", | ||
299 | type=int, | ||
300 | default=1000, | ||
301 | ) | ||
302 | parser.add_argument( | ||
303 | "--config", | ||
304 | type=str, | ||
305 | default=None, | ||
306 | help="Path to a JSON configuration file containing arguments for invoking this script." | ||
307 | ) | ||
308 | |||
309 | args = parser.parse_args() | ||
310 | if args.config is not None: | ||
311 | with open(args.config, 'rt') as f: | ||
312 | args = parser.parse_args( | ||
313 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
314 | |||
315 | if args.train_data_file is None: | ||
316 | raise ValueError("You must specify --train_data_file") | ||
317 | |||
318 | if args.pretrained_model_name_or_path is None: | ||
319 | raise ValueError("You must specify --pretrained_model_name_or_path") | ||
320 | |||
321 | if args.placeholder_token is None: | ||
322 | raise ValueError("You must specify --placeholder_token") | ||
323 | |||
324 | if args.initializer_token is None: | ||
325 | raise ValueError("You must specify --initializer_token") | ||
326 | |||
327 | if args.output_dir is None: | ||
328 | raise ValueError("You must specify --output_dir") | ||
329 | |||
330 | return args | ||
331 | |||
332 | |||
333 | def save_args(basepath: Path, args, extra={}): | ||
334 | info = {"args": vars(args)} | ||
335 | info["args"].update(extra) | ||
336 | with open(basepath.joinpath("args.json"), "w") as f: | ||
337 | json.dump(info, f, indent=4) | ||
338 | |||
339 | |||
340 | def freeze_params(params): | ||
341 | for param in params: | ||
342 | param.requires_grad = False | ||
343 | |||
344 | |||
345 | def make_grid(images, rows, cols): | ||
346 | w, h = images[0].size | ||
347 | grid = Image.new('RGB', size=(cols*w, rows*h)) | ||
348 | for i, image in enumerate(images): | ||
349 | grid.paste(image, box=(i % cols*w, i//cols*h)) | ||
350 | return grid | ||
351 | |||
352 | |||
353 | class Checkpointer: | ||
354 | def __init__( | ||
355 | self, | ||
356 | datamodule, | ||
357 | accelerator, | ||
358 | vae, | ||
359 | unet, | ||
360 | ema_unet, | ||
361 | tokenizer, | ||
362 | text_encoder, | ||
363 | instance_identifier, | ||
364 | placeholder_token, | ||
365 | placeholder_token_id, | ||
366 | output_dir: Path, | ||
367 | sample_image_size, | ||
368 | sample_batches, | ||
369 | sample_batch_size, | ||
370 | seed | ||
371 | ): | ||
372 | self.datamodule = datamodule | ||
373 | self.accelerator = accelerator | ||
374 | self.vae = vae | ||
375 | self.unet = unet | ||
376 | self.ema_unet = ema_unet | ||
377 | self.tokenizer = tokenizer | ||
378 | self.text_encoder = text_encoder | ||
379 | self.instance_identifier = instance_identifier | ||
380 | self.placeholder_token = placeholder_token | ||
381 | self.placeholder_token_id = placeholder_token_id | ||
382 | self.output_dir = output_dir | ||
383 | self.sample_image_size = sample_image_size | ||
384 | self.seed = seed or torch.random.seed() | ||
385 | self.sample_batches = sample_batches | ||
386 | self.sample_batch_size = sample_batch_size | ||
387 | |||
388 | @torch.no_grad() | ||
389 | def checkpoint(self, step, postfix): | ||
390 | print("Saving checkpoint for step %d..." % step) | ||
391 | |||
392 | checkpoints_path = self.output_dir.joinpath("checkpoints") | ||
393 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
394 | |||
395 | unwrapped = self.accelerator.unwrap_model(self.text_encoder) | ||
396 | |||
397 | # Save a checkpoint | ||
398 | learned_embeds = unwrapped.get_input_embeddings().weight[self.placeholder_token_id] | ||
399 | learned_embeds_dict = {self.placeholder_token: learned_embeds.detach().cpu()} | ||
400 | |||
401 | filename = f"%s_%d_%s.bin" % (slugify(self.placeholder_token), step, postfix) | ||
402 | torch.save(learned_embeds_dict, checkpoints_path.joinpath(filename)) | ||
403 | |||
404 | del unwrapped | ||
405 | del learned_embeds | ||
406 | |||
407 | @torch.no_grad() | ||
408 | def save_model(self): | ||
409 | print("Saving model...") | ||
410 | |||
411 | unwrapped_unet = self.accelerator.unwrap_model( | ||
412 | self.ema_unet.averaged_model if self.ema_unet is not None else self.unet) | ||
413 | unwrapped_text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
414 | pipeline = VlpnStableDiffusion( | ||
415 | text_encoder=unwrapped_text_encoder, | ||
416 | vae=self.vae, | ||
417 | unet=unwrapped_unet, | ||
418 | tokenizer=self.tokenizer, | ||
419 | scheduler=PNDMScheduler( | ||
420 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True | ||
421 | ), | ||
422 | ) | ||
423 | pipeline.save_pretrained(self.output_dir.joinpath("model")) | ||
424 | |||
425 | del unwrapped_unet | ||
426 | del unwrapped_text_encoder | ||
427 | del pipeline | ||
428 | |||
429 | if torch.cuda.is_available(): | ||
430 | torch.cuda.empty_cache() | ||
431 | |||
432 | @torch.no_grad() | ||
433 | def save_samples(self, step, height, width, guidance_scale, eta, num_inference_steps): | ||
434 | samples_path = Path(self.output_dir).joinpath("samples") | ||
435 | |||
436 | unwrapped_unet = self.accelerator.unwrap_model( | ||
437 | self.ema_unet.averaged_model if self.ema_unet is not None else self.unet) | ||
438 | unwrapped_text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
439 | scheduler = EulerAScheduler( | ||
440 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
441 | ) | ||
442 | |||
443 | # Save a sample image | ||
444 | pipeline = VlpnStableDiffusion( | ||
445 | text_encoder=unwrapped_text_encoder, | ||
446 | vae=self.vae, | ||
447 | unet=unwrapped_unet, | ||
448 | tokenizer=self.tokenizer, | ||
449 | scheduler=scheduler, | ||
450 | ).to(self.accelerator.device) | ||
451 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
452 | |||
453 | train_data = self.datamodule.train_dataloader() | ||
454 | val_data = self.datamodule.val_dataloader() | ||
455 | |||
456 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) | ||
457 | stable_latents = torch.randn( | ||
458 | (self.sample_batch_size, pipeline.unet.in_channels, height // 8, width // 8), | ||
459 | device=pipeline.device, | ||
460 | generator=generator, | ||
461 | ) | ||
462 | |||
463 | with torch.inference_mode(): | ||
464 | for pool, data, latents in [("stable", val_data, stable_latents), ("val", val_data, None), ("train", train_data, None)]: | ||
465 | all_samples = [] | ||
466 | file_path = samples_path.joinpath(pool, f"step_{step}.png") | ||
467 | file_path.parent.mkdir(parents=True, exist_ok=True) | ||
468 | |||
469 | data_enum = enumerate(data) | ||
470 | |||
471 | for i in range(self.sample_batches): | ||
472 | batches = [batch for j, batch in data_enum if j * data.batch_size < self.sample_batch_size] | ||
473 | prompt = [ | ||
474 | prompt.format(self.instance_identifier) | ||
475 | for batch in batches | ||
476 | for prompt in batch["prompts"] | ||
477 | ][:self.sample_batch_size] | ||
478 | nprompt = [ | ||
479 | prompt | ||
480 | for batch in batches | ||
481 | for prompt in batch["nprompts"] | ||
482 | ][:self.sample_batch_size] | ||
483 | |||
484 | samples = pipeline( | ||
485 | prompt=prompt, | ||
486 | negative_prompt=nprompt, | ||
487 | height=self.sample_image_size, | ||
488 | width=self.sample_image_size, | ||
489 | latents=latents[:len(prompt)] if latents is not None else None, | ||
490 | generator=generator if latents is not None else None, | ||
491 | guidance_scale=guidance_scale, | ||
492 | eta=eta, | ||
493 | num_inference_steps=num_inference_steps, | ||
494 | output_type='pil' | ||
495 | ).images | ||
496 | |||
497 | all_samples += samples | ||
498 | |||
499 | del samples | ||
500 | |||
501 | image_grid = make_grid(all_samples, self.sample_batches, self.sample_batch_size) | ||
502 | image_grid.save(file_path) | ||
503 | |||
504 | del all_samples | ||
505 | del image_grid | ||
506 | |||
507 | del unwrapped_unet | ||
508 | del unwrapped_text_encoder | ||
509 | del scheduler | ||
510 | del pipeline | ||
511 | del generator | ||
512 | del stable_latents | ||
513 | |||
514 | if torch.cuda.is_available(): | ||
515 | torch.cuda.empty_cache() | ||
516 | |||
517 | |||
518 | def main(): | ||
519 | args = parse_args() | ||
520 | |||
521 | global_step_offset = 0 | ||
522 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
523 | basepath = Path(args.output_dir).joinpath(slugify(args.placeholder_token), now) | ||
524 | basepath.mkdir(parents=True, exist_ok=True) | ||
525 | |||
526 | accelerator = Accelerator( | ||
527 | log_with=LoggerType.TENSORBOARD, | ||
528 | logging_dir=f"{basepath}", | ||
529 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
530 | mixed_precision=args.mixed_precision | ||
531 | ) | ||
532 | |||
533 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
534 | |||
535 | save_args(basepath, args) | ||
536 | |||
537 | # If passed along, set the training seed now. | ||
538 | if args.seed is not None: | ||
539 | set_seed(args.seed) | ||
540 | |||
541 | args.instance_identifier = args.instance_identifier.format(args.placeholder_token) | ||
542 | |||
543 | # Load the tokenizer and add the placeholder token as a additional special token | ||
544 | if args.tokenizer_name: | ||
545 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
546 | elif args.pretrained_model_name_or_path: | ||
547 | tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') | ||
548 | |||
549 | # Convert the initializer_token, placeholder_token to ids | ||
550 | initializer_token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) | ||
551 | print(f"Initializer token maps to {len(initializer_token_ids)} embeddings.") | ||
552 | initializer_token_ids = torch.tensor(initializer_token_ids[:1]) | ||
553 | |||
554 | # Add the placeholder token in tokenizer | ||
555 | num_added_tokens = tokenizer.add_tokens(args.placeholder_token) | ||
556 | if num_added_tokens == 0: | ||
557 | print(f"Re-using existing token {args.placeholder_token}.") | ||
558 | else: | ||
559 | print(f"Training new token {args.placeholder_token}.") | ||
560 | |||
561 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | ||
562 | |||
563 | # Load models and create wrapper for stable diffusion | ||
564 | text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') | ||
565 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') | ||
566 | unet = UNet2DConditionModel.from_pretrained( | ||
567 | args.pretrained_model_name_or_path, subfolder='unet') | ||
568 | |||
569 | ema_unet = EMAModel( | ||
570 | unet, | ||
571 | inv_gamma=args.ema_inv_gamma, | ||
572 | power=args.ema_power, | ||
573 | max_value=args.ema_max_decay, | ||
574 | device=accelerator.device | ||
575 | ) if args.use_ema else None | ||
576 | |||
577 | prompt_processor = PromptProcessor(tokenizer, text_encoder) | ||
578 | |||
579 | if args.gradient_checkpointing: | ||
580 | unet.enable_gradient_checkpointing() | ||
581 | text_encoder.gradient_checkpointing_enable() | ||
582 | |||
583 | # slice_size = unet.config.attention_head_dim // 2 | ||
584 | # unet.set_attention_slice(slice_size) | ||
585 | |||
586 | # Resize the token embeddings as we are adding new special tokens to the tokenizer | ||
587 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
588 | |||
589 | # Initialise the newly added placeholder token with the embeddings of the initializer token | ||
590 | token_embeds = text_encoder.get_input_embeddings().weight.data | ||
591 | original_token_embeds = token_embeds.detach().clone().to(accelerator.device) | ||
592 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | ||
593 | token_embeds[placeholder_token_id] = initializer_token_embeddings | ||
594 | |||
595 | # Freeze vae and unet | ||
596 | freeze_params(vae.parameters()) | ||
597 | # Freeze all parameters except for the token embeddings in text encoder | ||
598 | params_to_freeze = itertools.chain( | ||
599 | text_encoder.text_model.encoder.parameters(), | ||
600 | text_encoder.text_model.final_layer_norm.parameters(), | ||
601 | text_encoder.text_model.embeddings.position_embedding.parameters(), | ||
602 | ) | ||
603 | freeze_params(params_to_freeze) | ||
604 | |||
605 | if args.scale_lr: | ||
606 | args.learning_rate_unet = ( | ||
607 | args.learning_rate_unet * args.gradient_accumulation_steps * | ||
608 | args.train_batch_size * accelerator.num_processes | ||
609 | ) | ||
610 | args.learning_rate_text = ( | ||
611 | args.learning_rate_text * args.gradient_accumulation_steps * | ||
612 | args.train_batch_size * accelerator.num_processes | ||
613 | ) | ||
614 | |||
615 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
616 | if args.use_8bit_adam: | ||
617 | try: | ||
618 | import bitsandbytes as bnb | ||
619 | except ImportError: | ||
620 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
621 | |||
622 | optimizer_class = bnb.optim.AdamW8bit | ||
623 | else: | ||
624 | optimizer_class = torch.optim.AdamW | ||
625 | |||
626 | # Initialize the optimizer | ||
627 | optimizer = optimizer_class( | ||
628 | [ | ||
629 | { | ||
630 | 'params': unet.parameters(), | ||
631 | 'lr': args.learning_rate_unet, | ||
632 | }, | ||
633 | { | ||
634 | 'params': text_encoder.get_input_embeddings().parameters(), | ||
635 | 'lr': args.learning_rate_text, | ||
636 | } | ||
637 | ], | ||
638 | betas=(args.adam_beta1, args.adam_beta2), | ||
639 | weight_decay=args.adam_weight_decay, | ||
640 | eps=args.adam_epsilon, | ||
641 | ) | ||
642 | |||
643 | noise_scheduler = DDPMScheduler( | ||
644 | beta_start=0.00085, | ||
645 | beta_end=0.012, | ||
646 | beta_schedule="scaled_linear", | ||
647 | num_train_timesteps=args.noise_timesteps | ||
648 | ) | ||
649 | |||
650 | weight_dtype = torch.float32 | ||
651 | if args.mixed_precision == "fp16": | ||
652 | weight_dtype = torch.float16 | ||
653 | elif args.mixed_precision == "bf16": | ||
654 | weight_dtype = torch.bfloat16 | ||
655 | |||
656 | def collate_fn(examples): | ||
657 | prompts = [example["prompts"] for example in examples] | ||
658 | nprompts = [example["nprompts"] for example in examples] | ||
659 | input_ids = [example["instance_prompt_ids"] for example in examples] | ||
660 | pixel_values = [example["instance_images"] for example in examples] | ||
661 | |||
662 | # concat class and instance examples for prior preservation | ||
663 | if args.num_class_images != 0 and "class_prompt_ids" in examples[0]: | ||
664 | input_ids += [example["class_prompt_ids"] for example in examples] | ||
665 | pixel_values += [example["class_images"] for example in examples] | ||
666 | |||
667 | pixel_values = torch.stack(pixel_values) | ||
668 | pixel_values = pixel_values.to(dtype=weight_dtype, memory_format=torch.contiguous_format) | ||
669 | |||
670 | input_ids = prompt_processor.unify_input_ids(input_ids) | ||
671 | |||
672 | batch = { | ||
673 | "prompts": prompts, | ||
674 | "nprompts": nprompts, | ||
675 | "input_ids": input_ids, | ||
676 | "pixel_values": pixel_values, | ||
677 | } | ||
678 | return batch | ||
679 | |||
680 | datamodule = CSVDataModule( | ||
681 | data_file=args.train_data_file, | ||
682 | batch_size=args.train_batch_size, | ||
683 | prompt_processor=prompt_processor, | ||
684 | instance_identifier=args.instance_identifier, | ||
685 | class_identifier=args.class_identifier, | ||
686 | class_subdir="cls", | ||
687 | num_class_images=args.num_class_images, | ||
688 | size=args.resolution, | ||
689 | repeats=args.repeats, | ||
690 | center_crop=args.center_crop, | ||
691 | valid_set_size=args.sample_batch_size*args.sample_batches, | ||
692 | collate_fn=collate_fn | ||
693 | ) | ||
694 | |||
695 | datamodule.prepare_data() | ||
696 | datamodule.setup() | ||
697 | |||
698 | if args.num_class_images != 0: | ||
699 | missing_data = [item for item in datamodule.data_train if not item.class_image_path.exists()] | ||
700 | |||
701 | if len(missing_data) != 0: | ||
702 | batched_data = [ | ||
703 | missing_data[i:i+args.sample_batch_size] | ||
704 | for i in range(0, len(missing_data), args.sample_batch_size) | ||
705 | ] | ||
706 | |||
707 | scheduler = EulerAScheduler( | ||
708 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
709 | ) | ||
710 | |||
711 | pipeline = VlpnStableDiffusion( | ||
712 | text_encoder=text_encoder, | ||
713 | vae=vae, | ||
714 | unet=unet, | ||
715 | tokenizer=tokenizer, | ||
716 | scheduler=scheduler, | ||
717 | ).to(accelerator.device) | ||
718 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
719 | |||
720 | with torch.inference_mode(): | ||
721 | for batch in batched_data: | ||
722 | image_name = [item.class_image_path for item in batch] | ||
723 | prompt = [item.prompt.format(args.class_identifier) for item in batch] | ||
724 | nprompt = [item.nprompt for item in batch] | ||
725 | |||
726 | images = pipeline( | ||
727 | prompt=prompt, | ||
728 | negative_prompt=nprompt, | ||
729 | num_inference_steps=args.sample_steps | ||
730 | ).images | ||
731 | |||
732 | for i, image in enumerate(images): | ||
733 | image.save(image_name[i]) | ||
734 | |||
735 | del pipeline | ||
736 | |||
737 | if torch.cuda.is_available(): | ||
738 | torch.cuda.empty_cache() | ||
739 | |||
740 | train_dataloader = datamodule.train_dataloader() | ||
741 | val_dataloader = datamodule.val_dataloader() | ||
742 | |||
743 | # Scheduler and math around the number of training steps. | ||
744 | overrode_max_train_steps = False | ||
745 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
746 | if args.max_train_steps is None: | ||
747 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
748 | overrode_max_train_steps = True | ||
749 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
750 | |||
751 | if args.lr_scheduler == "cosine_with_restarts": | ||
752 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | ||
753 | optimizer=optimizer, | ||
754 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | ||
755 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
756 | num_cycles=args.lr_cycles or math.ceil(math.sqrt( | ||
757 | ((args.max_train_steps - args.lr_warmup_steps) / num_update_steps_per_epoch))), | ||
758 | ) | ||
759 | else: | ||
760 | lr_scheduler = get_scheduler( | ||
761 | args.lr_scheduler, | ||
762 | optimizer=optimizer, | ||
763 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | ||
764 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
765 | ) | ||
766 | |||
767 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
768 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
769 | ) | ||
770 | |||
771 | # Move vae and unet to device | ||
772 | vae.to(accelerator.device, dtype=weight_dtype) | ||
773 | |||
774 | # Keep vae and unet in eval mode as we don't train these | ||
775 | vae.eval() | ||
776 | |||
777 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
778 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
779 | if overrode_max_train_steps: | ||
780 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
781 | |||
782 | num_val_steps_per_epoch = len(val_dataloader) | ||
783 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
784 | val_steps = num_val_steps_per_epoch * num_epochs | ||
785 | |||
786 | # We need to initialize the trackers we use, and also store our configuration. | ||
787 | # The trackers initializes automatically on the main process. | ||
788 | if accelerator.is_main_process: | ||
789 | accelerator.init_trackers("dreambooth_plus", config=vars(args)) | ||
790 | |||
791 | # Train! | ||
792 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
793 | |||
794 | logger.info("***** Running training *****") | ||
795 | logger.info(f" Num Epochs = {num_epochs}") | ||
796 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
797 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
798 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
799 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
800 | # Only show the progress bar once on each machine. | ||
801 | |||
802 | global_step = 0 | ||
803 | min_val_loss = np.inf | ||
804 | |||
805 | checkpointer = Checkpointer( | ||
806 | datamodule=datamodule, | ||
807 | accelerator=accelerator, | ||
808 | vae=vae, | ||
809 | unet=unet, | ||
810 | ema_unet=ema_unet, | ||
811 | tokenizer=tokenizer, | ||
812 | text_encoder=text_encoder, | ||
813 | instance_identifier=args.instance_identifier, | ||
814 | placeholder_token=args.placeholder_token, | ||
815 | placeholder_token_id=placeholder_token_id, | ||
816 | output_dir=basepath, | ||
817 | sample_image_size=args.sample_image_size, | ||
818 | sample_batch_size=args.sample_batch_size, | ||
819 | sample_batches=args.sample_batches, | ||
820 | seed=args.seed | ||
821 | ) | ||
822 | |||
823 | if accelerator.is_main_process: | ||
824 | checkpointer.save_samples( | ||
825 | 0, | ||
826 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
827 | |||
828 | local_progress_bar = tqdm( | ||
829 | range(num_update_steps_per_epoch + num_val_steps_per_epoch), | ||
830 | disable=not accelerator.is_local_main_process, | ||
831 | dynamic_ncols=True | ||
832 | ) | ||
833 | local_progress_bar.set_description("Epoch X / Y") | ||
834 | |||
835 | global_progress_bar = tqdm( | ||
836 | range(args.max_train_steps + val_steps), | ||
837 | disable=not accelerator.is_local_main_process, | ||
838 | dynamic_ncols=True | ||
839 | ) | ||
840 | global_progress_bar.set_description("Total progress") | ||
841 | |||
842 | try: | ||
843 | for epoch in range(num_epochs): | ||
844 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
845 | local_progress_bar.reset() | ||
846 | |||
847 | text_encoder.train() | ||
848 | train_loss = 0.0 | ||
849 | |||
850 | sample_checkpoint = False | ||
851 | |||
852 | for step, batch in enumerate(train_dataloader): | ||
853 | with accelerator.accumulate(itertools.chain(unet, text_encoder)): | ||
854 | # Convert images to latent space | ||
855 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
856 | latents = latents * 0.18215 | ||
857 | |||
858 | # Sample noise that we'll add to the latents | ||
859 | noise = torch.randn_like(latents) | ||
860 | bsz = latents.shape[0] | ||
861 | # Sample a random timestep for each image | ||
862 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
863 | (bsz,), device=latents.device) | ||
864 | timesteps = timesteps.long() | ||
865 | |||
866 | # Add noise to the latents according to the noise magnitude at each timestep | ||
867 | # (this is the forward diffusion process) | ||
868 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
869 | |||
870 | # Get the text embedding for conditioning | ||
871 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"]) | ||
872 | |||
873 | # Predict the noise residual | ||
874 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
875 | |||
876 | if args.num_class_images != 0: | ||
877 | # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. | ||
878 | noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) | ||
879 | noise, noise_prior = torch.chunk(noise, 2, dim=0) | ||
880 | |||
881 | # Compute instance loss | ||
882 | loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="none").mean([1, 2, 3]).mean() | ||
883 | |||
884 | # Compute prior loss | ||
885 | prior_loss = F.mse_loss(noise_pred_prior.float(), noise_prior.float(), reduction="mean") | ||
886 | |||
887 | # Add the prior loss to the instance loss. | ||
888 | loss = loss + args.prior_loss_weight * prior_loss | ||
889 | else: | ||
890 | loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean") | ||
891 | |||
892 | accelerator.backward(loss) | ||
893 | |||
894 | # Keep the token embeddings fixed except the newly added | ||
895 | # embeddings for the concept, as we only want to optimize the concept embeddings | ||
896 | if accelerator.num_processes > 1: | ||
897 | token_embeds = text_encoder.module.get_input_embeddings().weight | ||
898 | else: | ||
899 | token_embeds = text_encoder.get_input_embeddings().weight | ||
900 | |||
901 | # Get the index for tokens that we want to freeze | ||
902 | index_fixed_tokens = torch.arange(len(tokenizer)) != placeholder_token_id | ||
903 | token_embeds.data[index_fixed_tokens, :] = original_token_embeds[index_fixed_tokens, :] | ||
904 | |||
905 | if accelerator.sync_gradients: | ||
906 | accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) | ||
907 | |||
908 | optimizer.step() | ||
909 | if not accelerator.optimizer_step_was_skipped: | ||
910 | lr_scheduler.step() | ||
911 | optimizer.zero_grad(set_to_none=True) | ||
912 | |||
913 | loss = loss.detach().item() | ||
914 | train_loss += loss | ||
915 | |||
916 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
917 | if accelerator.sync_gradients: | ||
918 | if args.use_ema: | ||
919 | ema_unet.step(unet) | ||
920 | |||
921 | local_progress_bar.update(1) | ||
922 | global_progress_bar.update(1) | ||
923 | |||
924 | global_step += 1 | ||
925 | |||
926 | if global_step % args.sample_frequency == 0: | ||
927 | sample_checkpoint = True | ||
928 | |||
929 | if global_step % args.checkpoint_frequency == 0 and global_step > 0 and accelerator.is_main_process: | ||
930 | local_progress_bar.clear() | ||
931 | global_progress_bar.clear() | ||
932 | |||
933 | checkpointer.checkpoint(global_step + global_step_offset, "training") | ||
934 | |||
935 | logs = { | ||
936 | "train/loss": loss, | ||
937 | "lr/unet": lr_scheduler.get_last_lr()[0], | ||
938 | "lr/text": lr_scheduler.get_last_lr()[1] | ||
939 | } | ||
940 | if args.use_ema: | ||
941 | logs["ema_decay"] = ema_unet.decay | ||
942 | |||
943 | accelerator.log(logs, step=global_step) | ||
944 | |||
945 | local_progress_bar.set_postfix(**logs) | ||
946 | |||
947 | if global_step >= args.max_train_steps: | ||
948 | break | ||
949 | |||
950 | train_loss /= len(train_dataloader) | ||
951 | |||
952 | accelerator.wait_for_everyone() | ||
953 | |||
954 | text_encoder.eval() | ||
955 | val_loss = 0.0 | ||
956 | |||
957 | for step, batch in enumerate(val_dataloader): | ||
958 | with torch.no_grad(): | ||
959 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
960 | latents = latents * 0.18215 | ||
961 | |||
962 | noise = torch.randn_like(latents) | ||
963 | bsz = latents.shape[0] | ||
964 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
965 | (bsz,), device=latents.device) | ||
966 | timesteps = timesteps.long() | ||
967 | |||
968 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
969 | |||
970 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"]) | ||
971 | |||
972 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
973 | |||
974 | noise_pred, noise = accelerator.gather_for_metrics((noise_pred, noise)) | ||
975 | |||
976 | loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean") | ||
977 | |||
978 | loss = loss.detach().item() | ||
979 | val_loss += loss | ||
980 | |||
981 | if accelerator.sync_gradients: | ||
982 | local_progress_bar.update(1) | ||
983 | global_progress_bar.update(1) | ||
984 | |||
985 | logs = {"val/loss": loss} | ||
986 | local_progress_bar.set_postfix(**logs) | ||
987 | |||
988 | val_loss /= len(val_dataloader) | ||
989 | |||
990 | accelerator.log({"val/loss": val_loss}, step=global_step) | ||
991 | |||
992 | local_progress_bar.clear() | ||
993 | global_progress_bar.clear() | ||
994 | |||
995 | if min_val_loss > val_loss: | ||
996 | accelerator.print( | ||
997 | f"Global step {global_step}: Validation loss reached new minimum: {min_val_loss:.2e} -> {val_loss:.2e}") | ||
998 | checkpointer.checkpoint(global_step + global_step_offset, "milestone") | ||
999 | min_val_loss = val_loss | ||
1000 | |||
1001 | if sample_checkpoint and accelerator.is_main_process: | ||
1002 | checkpointer.save_samples( | ||
1003 | global_step + global_step_offset, | ||
1004 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
1005 | |||
1006 | # Create the pipeline using using the trained modules and save it. | ||
1007 | if accelerator.is_main_process: | ||
1008 | print("Finished! Saving final checkpoint and resume state.") | ||
1009 | checkpointer.checkpoint(global_step + global_step_offset, "end") | ||
1010 | checkpointer.save_model() | ||
1011 | accelerator.end_training() | ||
1012 | |||
1013 | except KeyboardInterrupt: | ||
1014 | if accelerator.is_main_process: | ||
1015 | print("Interrupted, saving checkpoint and resume state...") | ||
1016 | checkpointer.checkpoint(global_step + global_step_offset, "end") | ||
1017 | checkpointer.save_model() | ||
1018 | accelerator.end_training() | ||
1019 | quit() | ||
1020 | |||
1021 | |||
1022 | if __name__ == "__main__": | ||
1023 | main() | ||