diff options
| -rw-r--r-- | infer.py | 6 | ||||
| -rw-r--r-- | models/clip/embeddings.py | 5 | ||||
| -rw-r--r-- | models/clip/tokenizer.py | 9 | ||||
| -rw-r--r-- | train_dreambooth.py | 86 | ||||
| -rw-r--r-- | train_lora.py | 946 | ||||
| -rw-r--r-- | train_ti.py | 86 | ||||
| -rw-r--r-- | training/common.py | 75 | ||||
| -rw-r--r-- | util.py (renamed from common.py) | 11 |
8 files changed, 133 insertions, 1091 deletions
| @@ -28,7 +28,7 @@ from transformers import CLIPTextModel | |||
| 28 | from models.clip.embeddings import patch_managed_embeddings | 28 | from models.clip.embeddings import patch_managed_embeddings |
| 29 | from models.clip.tokenizer import MultiCLIPTokenizer | 29 | from models.clip.tokenizer import MultiCLIPTokenizer |
| 30 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 30 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 31 | from common import load_config, load_embeddings_from_dir | 31 | from util import load_config, load_embeddings_from_dir |
| 32 | 32 | ||
| 33 | 33 | ||
| 34 | torch.backends.cuda.matmul.allow_tf32 = True | 34 | torch.backends.cuda.matmul.allow_tf32 = True |
| @@ -192,12 +192,12 @@ def save_args(basepath, args, extra={}): | |||
| 192 | 192 | ||
| 193 | 193 | ||
| 194 | def load_embeddings(pipeline, embeddings_dir): | 194 | def load_embeddings(pipeline, embeddings_dir): |
| 195 | added_tokens = load_embeddings_from_dir( | 195 | added_tokens, added_ids = load_embeddings_from_dir( |
| 196 | pipeline.tokenizer, | 196 | pipeline.tokenizer, |
| 197 | pipeline.text_encoder.text_model.embeddings, | 197 | pipeline.text_encoder.text_model.embeddings, |
| 198 | Path(embeddings_dir) | 198 | Path(embeddings_dir) |
| 199 | ) | 199 | ) |
| 200 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {added_tokens}") | 200 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {zip(added_tokens, added_ids)}") |
| 201 | 201 | ||
| 202 | 202 | ||
| 203 | def create_pipeline(model, dtype): | 203 | def create_pipeline(model, dtype): |
diff --git a/models/clip/embeddings.py b/models/clip/embeddings.py index 1280ebd..fb639f1 100644 --- a/models/clip/embeddings.py +++ b/models/clip/embeddings.py | |||
| @@ -53,6 +53,8 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 53 | self.token_embedding = resize_embedding(self.token_embedding, size, self.initializer_factor) | 53 | self.token_embedding = resize_embedding(self.token_embedding, size, self.initializer_factor) |
| 54 | 54 | ||
| 55 | def add_embed(self, token_ids: Union[int, list[int]], initializer: Optional[Union[int, list[int], torch.FloatTensor]] = None): | 55 | def add_embed(self, token_ids: Union[int, list[int]], initializer: Optional[Union[int, list[int], torch.FloatTensor]] = None): |
| 56 | init_ratio = 1.0 | ||
| 57 | |||
| 56 | if isinstance(token_ids, int): | 58 | if isinstance(token_ids, int): |
| 57 | token_ids = [token_ids] | 59 | token_ids = [token_ids] |
| 58 | 60 | ||
| @@ -63,6 +65,7 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 63 | initializer = [initializer] | 65 | initializer = [initializer] |
| 64 | 66 | ||
| 65 | if isinstance(initializer, list): | 67 | if isinstance(initializer, list): |
| 68 | init_ratio = len(initializer) / len(token_ids) | ||
| 66 | initializer = (initializer * len(token_ids))[:len(token_ids)] | 69 | initializer = (initializer * len(token_ids))[:len(token_ids)] |
| 67 | 70 | ||
| 68 | with torch.no_grad(): | 71 | with torch.no_grad(): |
| @@ -76,6 +79,8 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 76 | dtype=self.temp_token_embedding.weight.dtype, | 79 | dtype=self.temp_token_embedding.weight.dtype, |
| 77 | ) | 80 | ) |
| 78 | 81 | ||
| 82 | return init_ratio | ||
| 83 | |||
| 79 | def load_embed(self, input_ids: list[int], filename: Path): | 84 | def load_embed(self, input_ids: list[int], filename: Path): |
| 80 | with safe_open(filename, framework="pt", device="cpu") as file: | 85 | with safe_open(filename, framework="pt", device="cpu") as file: |
| 81 | self.add_embed(input_ids, file.get_tensor("embed")) | 86 | self.add_embed(input_ids, file.get_tensor("embed")) |
diff --git a/models/clip/tokenizer.py b/models/clip/tokenizer.py index 4e97ab5..034adf9 100644 --- a/models/clip/tokenizer.py +++ b/models/clip/tokenizer.py | |||
| @@ -55,11 +55,6 @@ def shuffle_auto(tokens: list[int]): | |||
| 55 | return shuffle_all(tokens) | 55 | return shuffle_all(tokens) |
| 56 | 56 | ||
| 57 | 57 | ||
| 58 | class MultiCLIPTokenizerItem(NamedTuple): | ||
| 59 | token: str | ||
| 60 | ids: list[int] | ||
| 61 | |||
| 62 | |||
| 63 | class MultiCLIPTokenizer(CLIPTokenizer): | 58 | class MultiCLIPTokenizer(CLIPTokenizer): |
| 64 | def __init__(self, *args, **kwargs): | 59 | def __init__(self, *args, **kwargs): |
| 65 | super().__init__(*args, **kwargs) | 60 | super().__init__(*args, **kwargs) |
| @@ -96,7 +91,7 @@ class MultiCLIPTokenizer(CLIPTokenizer): | |||
| 96 | self, | 91 | self, |
| 97 | new_tokens: Union[str, list[str]], | 92 | new_tokens: Union[str, list[str]], |
| 98 | num_vectors: Union[int, list[int]] = 1 | 93 | num_vectors: Union[int, list[int]] = 1 |
| 99 | ) -> Union[MultiCLIPTokenizerItem, list[MultiCLIPTokenizerItem]]: | 94 | ) -> Union[list[int], list[list[int]]]: |
| 100 | if isinstance(new_tokens, list): | 95 | if isinstance(new_tokens, list): |
| 101 | if isinstance(num_vectors, int): | 96 | if isinstance(num_vectors, int): |
| 102 | num_vectors = [num_vectors] * len(new_tokens) | 97 | num_vectors = [num_vectors] * len(new_tokens) |
| @@ -119,7 +114,7 @@ class MultiCLIPTokenizer(CLIPTokenizer): | |||
| 119 | 114 | ||
| 120 | self.token_map[ids[0]] = ids | 115 | self.token_map[ids[0]] = ids |
| 121 | 116 | ||
| 122 | return MultiCLIPTokenizerItem(new_tokens, ids) | 117 | return ids |
| 123 | 118 | ||
| 124 | def expand_id(self, id: int): | 119 | def expand_id(self, id: int): |
| 125 | if id in self.token_map: | 120 | if id in self.token_map: |
diff --git a/train_dreambooth.py b/train_dreambooth.py index 2e0696b..c658ad6 100644 --- a/train_dreambooth.py +++ b/train_dreambooth.py | |||
| @@ -4,9 +4,9 @@ import math | |||
| 4 | import datetime | 4 | import datetime |
| 5 | import logging | 5 | import logging |
| 6 | from pathlib import Path | 6 | from pathlib import Path |
| 7 | from functools import partial | ||
| 7 | 8 | ||
| 8 | import torch | 9 | import torch |
| 9 | import torch.nn.functional as F | ||
| 10 | import torch.utils.checkpoint | 10 | import torch.utils.checkpoint |
| 11 | 11 | ||
| 12 | from accelerate import Accelerator | 12 | from accelerate import Accelerator |
| @@ -20,9 +20,10 @@ from tqdm.auto import tqdm | |||
| 20 | from transformers import CLIPTextModel | 20 | from transformers import CLIPTextModel |
| 21 | from slugify import slugify | 21 | from slugify import slugify |
| 22 | 22 | ||
| 23 | from common import load_config, load_embeddings_from_dir | 23 | from util import load_config, load_embeddings_from_dir |
| 24 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 24 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 25 | from data.csv import CSVDataModule, CSVDataItem | 25 | from data.csv import CSVDataModule, CSVDataItem |
| 26 | from training.common import run_model | ||
| 26 | from training.optimization import get_one_cycle_schedule | 27 | from training.optimization import get_one_cycle_schedule |
| 27 | from training.lr import LRFinder | 28 | from training.lr import LRFinder |
| 28 | from training.util import AverageMeter, CheckpointerBase, save_args | 29 | from training.util import AverageMeter, CheckpointerBase, save_args |
| @@ -610,8 +611,8 @@ def main(): | |||
| 610 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | 611 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): |
| 611 | raise ValueError("--embeddings_dir must point to an existing directory") | 612 | raise ValueError("--embeddings_dir must point to an existing directory") |
| 612 | 613 | ||
| 613 | added_tokens_from_dir = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | 614 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) |
| 614 | print(f"Added {len(added_tokens_from_dir)} tokens from embeddings dir: {added_tokens_from_dir}") | 615 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {zip(added_tokens, added_ids)}") |
| 615 | 616 | ||
| 616 | if len(args.placeholder_token) != 0: | 617 | if len(args.placeholder_token) != 0: |
| 617 | # Convert the initializer_token, placeholder_token to ids | 618 | # Convert the initializer_token, placeholder_token to ids |
| @@ -620,13 +621,15 @@ def main(): | |||
| 620 | for token in args.initializer_token | 621 | for token in args.initializer_token |
| 621 | ] | 622 | ] |
| 622 | 623 | ||
| 623 | new_tokens = tokenizer.add_multi_tokens(args.placeholder_token, args.num_vectors) | 624 | new_ids = tokenizer.add_multi_tokens(args.placeholder_token, args.num_vectors) |
| 624 | embeddings.resize(len(tokenizer)) | 625 | embeddings.resize(len(tokenizer)) |
| 625 | 626 | ||
| 626 | for (new_token, init_ids) in zip(new_tokens, initializer_token_ids): | 627 | init_ratios = [ |
| 627 | embeddings.add_embed(new_token.ids, init_ids) | 628 | embeddings.add_embed(new_id, init_ids) |
| 629 | for (new_id, init_ids) in zip(new_ids, initializer_token_ids) | ||
| 630 | ] | ||
| 628 | 631 | ||
| 629 | print(f"Added {len(new_tokens)} new tokens.") | 632 | print(f"Added {len(new_ids)} new tokens: {zip(args.placeholder_token, new_ids, init_ratios)}") |
| 630 | else: | 633 | else: |
| 631 | placeholder_token_id = [] | 634 | placeholder_token_id = [] |
| 632 | 635 | ||
| @@ -856,63 +859,16 @@ def main(): | |||
| 856 | def on_eval(): | 859 | def on_eval(): |
| 857 | tokenizer.eval() | 860 | tokenizer.eval() |
| 858 | 861 | ||
| 859 | def loop(step: int, batch, eval: bool = False): | 862 | loop = partial( |
| 860 | # Convert images to latent space | 863 | run_model, |
| 861 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | 864 | vae=vae, |
| 862 | latents = latents * 0.18215 | 865 | noise_scheduler=noise_scheduler, |
| 863 | 866 | unet=unet, | |
| 864 | # Sample noise that we'll add to the latents | 867 | prompt_processor=prompt_processor, |
| 865 | noise = torch.randn_like(latents) | 868 | num_class_images=args.num_class_images, |
| 866 | bsz = latents.shape[0] | 869 | prior_loss_weight=args.prior_loss_weight, |
| 867 | # Sample a random timestep for each image | 870 | seed=args.seed, |
| 868 | timesteps_gen = torch.Generator(device=latents.device).manual_seed(args.seed + step) if eval else None | 871 | ) |
| 869 | timesteps = torch.randint( | ||
| 870 | 0, | ||
| 871 | noise_scheduler.config.num_train_timesteps, | ||
| 872 | (bsz,), | ||
| 873 | generator=timesteps_gen, | ||
| 874 | device=latents.device, | ||
| 875 | ) | ||
| 876 | timesteps = timesteps.long() | ||
| 877 | |||
| 878 | # Add noise to the latents according to the noise magnitude at each timestep | ||
| 879 | # (this is the forward diffusion process) | ||
| 880 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 881 | noisy_latents = noisy_latents.to(dtype=unet.dtype) | ||
| 882 | |||
| 883 | # Get the text embedding for conditioning | ||
| 884 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | ||
| 885 | |||
| 886 | # Predict the noise residual | ||
| 887 | model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 888 | |||
| 889 | # Get the target for loss depending on the prediction type | ||
| 890 | if noise_scheduler.config.prediction_type == "epsilon": | ||
| 891 | target = noise | ||
| 892 | elif noise_scheduler.config.prediction_type == "v_prediction": | ||
| 893 | target = noise_scheduler.get_velocity(latents, noise, timesteps) | ||
| 894 | else: | ||
| 895 | raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | ||
| 896 | |||
| 897 | if args.num_class_images != 0: | ||
| 898 | # Chunk the noise and model_pred into two parts and compute the loss on each part separately. | ||
| 899 | model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | ||
| 900 | target, target_prior = torch.chunk(target, 2, dim=0) | ||
| 901 | |||
| 902 | # Compute instance loss | ||
| 903 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 904 | |||
| 905 | # Compute prior loss | ||
| 906 | prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") | ||
| 907 | |||
| 908 | # Add the prior loss to the instance loss. | ||
| 909 | loss = loss + args.prior_loss_weight * prior_loss | ||
| 910 | else: | ||
| 911 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 912 | |||
| 913 | acc = (model_pred == target).float().mean() | ||
| 914 | |||
| 915 | return loss, acc, bsz | ||
| 916 | 872 | ||
| 917 | # We need to initialize the trackers we use, and also store our configuration. | 873 | # We need to initialize the trackers we use, and also store our configuration. |
| 918 | # The trackers initializes automatically on the main process. | 874 | # The trackers initializes automatically on the main process. |
diff --git a/train_lora.py b/train_lora.py deleted file mode 100644 index de878a4..0000000 --- a/train_lora.py +++ /dev/null | |||
| @@ -1,946 +0,0 @@ | |||
| 1 | import argparse | ||
| 2 | import itertools | ||
| 3 | import math | ||
| 4 | import datetime | ||
| 5 | import logging | ||
| 6 | import json | ||
| 7 | from pathlib import Path | ||
| 8 | |||
| 9 | import torch | ||
| 10 | import torch.nn.functional as F | ||
| 11 | import torch.utils.checkpoint | ||
| 12 | |||
| 13 | from accelerate import Accelerator | ||
| 14 | from accelerate.logging import get_logger | ||
| 15 | from accelerate.utils import LoggerType, set_seed | ||
| 16 | from diffusers import AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, UNet2DConditionModel | ||
| 17 | from diffusers.optimization import get_scheduler, get_cosine_with_hard_restarts_schedule_with_warmup | ||
| 18 | from diffusers.training_utils import EMAModel | ||
| 19 | from tqdm.auto import tqdm | ||
| 20 | from transformers import CLIPTextModel, CLIPTokenizer | ||
| 21 | from slugify import slugify | ||
| 22 | |||
| 23 | from common import load_text_embeddings, load_config | ||
| 24 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 25 | from data.csv import CSVDataModule | ||
| 26 | from training.lora import LoraAttnProcessor | ||
| 27 | from training.optimization import get_one_cycle_schedule | ||
| 28 | from training.util import AverageMeter, CheckpointerBase, save_args | ||
| 29 | from models.clip.prompt import PromptProcessor | ||
| 30 | |||
| 31 | logger = get_logger(__name__) | ||
| 32 | |||
| 33 | |||
| 34 | torch.backends.cuda.matmul.allow_tf32 = True | ||
| 35 | torch.backends.cudnn.benchmark = True | ||
| 36 | |||
| 37 | |||
| 38 | def parse_args(): | ||
| 39 | parser = argparse.ArgumentParser( | ||
| 40 | description="Simple example of a training script." | ||
| 41 | ) | ||
| 42 | parser.add_argument( | ||
| 43 | "--pretrained_model_name_or_path", | ||
| 44 | type=str, | ||
| 45 | default=None, | ||
| 46 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
| 47 | ) | ||
| 48 | parser.add_argument( | ||
| 49 | "--tokenizer_name", | ||
| 50 | type=str, | ||
| 51 | default=None, | ||
| 52 | help="Pretrained tokenizer name or path if not the same as model_name", | ||
| 53 | ) | ||
| 54 | parser.add_argument( | ||
| 55 | "--train_data_file", | ||
| 56 | type=str, | ||
| 57 | default=None, | ||
| 58 | help="A folder containing the training data." | ||
| 59 | ) | ||
| 60 | parser.add_argument( | ||
| 61 | "--train_data_template", | ||
| 62 | type=str, | ||
| 63 | default="template", | ||
| 64 | ) | ||
| 65 | parser.add_argument( | ||
| 66 | "--instance_identifier", | ||
| 67 | type=str, | ||
| 68 | default=None, | ||
| 69 | help="A token to use as a placeholder for the concept.", | ||
| 70 | ) | ||
| 71 | parser.add_argument( | ||
| 72 | "--class_identifier", | ||
| 73 | type=str, | ||
| 74 | default=None, | ||
| 75 | help="A token to use as a placeholder for the concept.", | ||
| 76 | ) | ||
| 77 | parser.add_argument( | ||
| 78 | "--placeholder_token", | ||
| 79 | type=str, | ||
| 80 | nargs='*', | ||
| 81 | default=[], | ||
| 82 | help="A token to use as a placeholder for the concept.", | ||
| 83 | ) | ||
| 84 | parser.add_argument( | ||
| 85 | "--initializer_token", | ||
| 86 | type=str, | ||
| 87 | nargs='*', | ||
| 88 | default=[], | ||
| 89 | help="A token to use as initializer word." | ||
| 90 | ) | ||
| 91 | parser.add_argument( | ||
| 92 | "--tag_dropout", | ||
| 93 | type=float, | ||
| 94 | default=0.1, | ||
| 95 | help="Tag dropout probability.", | ||
| 96 | ) | ||
| 97 | parser.add_argument( | ||
| 98 | "--num_class_images", | ||
| 99 | type=int, | ||
| 100 | default=400, | ||
| 101 | help="How many class images to generate." | ||
| 102 | ) | ||
| 103 | parser.add_argument( | ||
| 104 | "--repeats", | ||
| 105 | type=int, | ||
| 106 | default=1, | ||
| 107 | help="How many times to repeat the training data." | ||
| 108 | ) | ||
| 109 | parser.add_argument( | ||
| 110 | "--output_dir", | ||
| 111 | type=str, | ||
| 112 | default="output/lora", | ||
| 113 | help="The output directory where the model predictions and checkpoints will be written.", | ||
| 114 | ) | ||
| 115 | parser.add_argument( | ||
| 116 | "--embeddings_dir", | ||
| 117 | type=str, | ||
| 118 | default=None, | ||
| 119 | help="The embeddings directory where Textual Inversion embeddings are stored.", | ||
| 120 | ) | ||
| 121 | parser.add_argument( | ||
| 122 | "--mode", | ||
| 123 | type=str, | ||
| 124 | default=None, | ||
| 125 | help="A mode to filter the dataset.", | ||
| 126 | ) | ||
| 127 | parser.add_argument( | ||
| 128 | "--seed", | ||
| 129 | type=int, | ||
| 130 | default=None, | ||
| 131 | help="A seed for reproducible training." | ||
| 132 | ) | ||
| 133 | parser.add_argument( | ||
| 134 | "--resolution", | ||
| 135 | type=int, | ||
| 136 | default=768, | ||
| 137 | help=( | ||
| 138 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
| 139 | " resolution" | ||
| 140 | ), | ||
| 141 | ) | ||
| 142 | parser.add_argument( | ||
| 143 | "--center_crop", | ||
| 144 | action="store_true", | ||
| 145 | help="Whether to center crop images before resizing to resolution" | ||
| 146 | ) | ||
| 147 | parser.add_argument( | ||
| 148 | "--dataloader_num_workers", | ||
| 149 | type=int, | ||
| 150 | default=0, | ||
| 151 | help=( | ||
| 152 | "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main" | ||
| 153 | " process." | ||
| 154 | ), | ||
| 155 | ) | ||
| 156 | parser.add_argument( | ||
| 157 | "--num_train_epochs", | ||
| 158 | type=int, | ||
| 159 | default=100 | ||
| 160 | ) | ||
| 161 | parser.add_argument( | ||
| 162 | "--max_train_steps", | ||
| 163 | type=int, | ||
| 164 | default=None, | ||
| 165 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | ||
| 166 | ) | ||
| 167 | parser.add_argument( | ||
| 168 | "--gradient_accumulation_steps", | ||
| 169 | type=int, | ||
| 170 | default=1, | ||
| 171 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
| 172 | ) | ||
| 173 | parser.add_argument( | ||
| 174 | "--gradient_checkpointing", | ||
| 175 | action="store_true", | ||
| 176 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | ||
| 177 | ) | ||
| 178 | parser.add_argument( | ||
| 179 | "--learning_rate", | ||
| 180 | type=float, | ||
| 181 | default=2e-6, | ||
| 182 | help="Initial learning rate (after the potential warmup period) to use.", | ||
| 183 | ) | ||
| 184 | parser.add_argument( | ||
| 185 | "--scale_lr", | ||
| 186 | action="store_true", | ||
| 187 | default=True, | ||
| 188 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | ||
| 189 | ) | ||
| 190 | parser.add_argument( | ||
| 191 | "--lr_scheduler", | ||
| 192 | type=str, | ||
| 193 | default="one_cycle", | ||
| 194 | help=( | ||
| 195 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | ||
| 196 | ' "constant", "constant_with_warmup", "one_cycle"]' | ||
| 197 | ), | ||
| 198 | ) | ||
| 199 | parser.add_argument( | ||
| 200 | "--lr_warmup_epochs", | ||
| 201 | type=int, | ||
| 202 | default=10, | ||
| 203 | help="Number of steps for the warmup in the lr scheduler." | ||
| 204 | ) | ||
| 205 | parser.add_argument( | ||
| 206 | "--lr_cycles", | ||
| 207 | type=int, | ||
| 208 | default=None, | ||
| 209 | help="Number of restart cycles in the lr scheduler (if supported)." | ||
| 210 | ) | ||
| 211 | parser.add_argument( | ||
| 212 | "--use_8bit_adam", | ||
| 213 | action="store_true", | ||
| 214 | default=True, | ||
| 215 | help="Whether or not to use 8-bit Adam from bitsandbytes." | ||
| 216 | ) | ||
| 217 | parser.add_argument( | ||
| 218 | "--adam_beta1", | ||
| 219 | type=float, | ||
| 220 | default=0.9, | ||
| 221 | help="The beta1 parameter for the Adam optimizer." | ||
| 222 | ) | ||
| 223 | parser.add_argument( | ||
| 224 | "--adam_beta2", | ||
| 225 | type=float, | ||
| 226 | default=0.999, | ||
| 227 | help="The beta2 parameter for the Adam optimizer." | ||
| 228 | ) | ||
| 229 | parser.add_argument( | ||
| 230 | "--adam_weight_decay", | ||
| 231 | type=float, | ||
| 232 | default=1e-2, | ||
| 233 | help="Weight decay to use." | ||
| 234 | ) | ||
| 235 | parser.add_argument( | ||
| 236 | "--adam_epsilon", | ||
| 237 | type=float, | ||
| 238 | default=1e-08, | ||
| 239 | help="Epsilon value for the Adam optimizer" | ||
| 240 | ) | ||
| 241 | parser.add_argument( | ||
| 242 | "--mixed_precision", | ||
| 243 | type=str, | ||
| 244 | default="no", | ||
| 245 | choices=["no", "fp16", "bf16"], | ||
| 246 | help=( | ||
| 247 | "Whether to use mixed precision. Choose" | ||
| 248 | "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | ||
| 249 | "and an Nvidia Ampere GPU." | ||
| 250 | ), | ||
| 251 | ) | ||
| 252 | parser.add_argument( | ||
| 253 | "--sample_frequency", | ||
| 254 | type=int, | ||
| 255 | default=1, | ||
| 256 | help="How often to save a checkpoint and sample image", | ||
| 257 | ) | ||
| 258 | parser.add_argument( | ||
| 259 | "--sample_image_size", | ||
| 260 | type=int, | ||
| 261 | default=768, | ||
| 262 | help="Size of sample images", | ||
| 263 | ) | ||
| 264 | parser.add_argument( | ||
| 265 | "--sample_batches", | ||
| 266 | type=int, | ||
| 267 | default=1, | ||
| 268 | help="Number of sample batches to generate per checkpoint", | ||
| 269 | ) | ||
| 270 | parser.add_argument( | ||
| 271 | "--sample_batch_size", | ||
| 272 | type=int, | ||
| 273 | default=1, | ||
| 274 | help="Number of samples to generate per batch", | ||
| 275 | ) | ||
| 276 | parser.add_argument( | ||
| 277 | "--valid_set_size", | ||
| 278 | type=int, | ||
| 279 | default=None, | ||
| 280 | help="Number of images in the validation dataset." | ||
| 281 | ) | ||
| 282 | parser.add_argument( | ||
| 283 | "--train_batch_size", | ||
| 284 | type=int, | ||
| 285 | default=1, | ||
| 286 | help="Batch size (per device) for the training dataloader." | ||
| 287 | ) | ||
| 288 | parser.add_argument( | ||
| 289 | "--sample_steps", | ||
| 290 | type=int, | ||
| 291 | default=15, | ||
| 292 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | ||
| 293 | ) | ||
| 294 | parser.add_argument( | ||
| 295 | "--prior_loss_weight", | ||
| 296 | type=float, | ||
| 297 | default=1.0, | ||
| 298 | help="The weight of prior preservation loss." | ||
| 299 | ) | ||
| 300 | parser.add_argument( | ||
| 301 | "--max_grad_norm", | ||
| 302 | default=1.0, | ||
| 303 | type=float, | ||
| 304 | help="Max gradient norm." | ||
| 305 | ) | ||
| 306 | parser.add_argument( | ||
| 307 | "--noise_timesteps", | ||
| 308 | type=int, | ||
| 309 | default=1000, | ||
| 310 | ) | ||
| 311 | parser.add_argument( | ||
| 312 | "--config", | ||
| 313 | type=str, | ||
| 314 | default=None, | ||
| 315 | help="Path to a JSON configuration file containing arguments for invoking this script." | ||
| 316 | ) | ||
| 317 | |||
| 318 | args = parser.parse_args() | ||
| 319 | if args.config is not None: | ||
| 320 | args = load_config(args.config) | ||
| 321 | args = parser.parse_args(namespace=argparse.Namespace(**args)) | ||
| 322 | |||
| 323 | if args.train_data_file is None: | ||
| 324 | raise ValueError("You must specify --train_data_file") | ||
| 325 | |||
| 326 | if args.pretrained_model_name_or_path is None: | ||
| 327 | raise ValueError("You must specify --pretrained_model_name_or_path") | ||
| 328 | |||
| 329 | if args.instance_identifier is None: | ||
| 330 | raise ValueError("You must specify --instance_identifier") | ||
| 331 | |||
| 332 | if isinstance(args.initializer_token, str): | ||
| 333 | args.initializer_token = [args.initializer_token] | ||
| 334 | |||
| 335 | if isinstance(args.placeholder_token, str): | ||
| 336 | args.placeholder_token = [args.placeholder_token] | ||
| 337 | |||
| 338 | if len(args.placeholder_token) == 0: | ||
| 339 | args.placeholder_token = [f"<*{i}>" for i in range(len(args.initializer_token))] | ||
| 340 | |||
| 341 | if len(args.placeholder_token) != len(args.initializer_token): | ||
| 342 | raise ValueError("Number of items in --placeholder_token and --initializer_token must match") | ||
| 343 | |||
| 344 | if args.output_dir is None: | ||
| 345 | raise ValueError("You must specify --output_dir") | ||
| 346 | |||
| 347 | return args | ||
| 348 | |||
| 349 | |||
| 350 | class Checkpointer(CheckpointerBase): | ||
| 351 | def __init__( | ||
| 352 | self, | ||
| 353 | datamodule, | ||
| 354 | accelerator, | ||
| 355 | vae, | ||
| 356 | unet, | ||
| 357 | tokenizer, | ||
| 358 | text_encoder, | ||
| 359 | unet_lora, | ||
| 360 | scheduler, | ||
| 361 | instance_identifier, | ||
| 362 | placeholder_token, | ||
| 363 | placeholder_token_id, | ||
| 364 | output_dir: Path, | ||
| 365 | sample_image_size, | ||
| 366 | sample_batches, | ||
| 367 | sample_batch_size, | ||
| 368 | seed | ||
| 369 | ): | ||
| 370 | super().__init__( | ||
| 371 | datamodule=datamodule, | ||
| 372 | output_dir=output_dir, | ||
| 373 | instance_identifier=instance_identifier, | ||
| 374 | placeholder_token=placeholder_token, | ||
| 375 | placeholder_token_id=placeholder_token_id, | ||
| 376 | sample_image_size=sample_image_size, | ||
| 377 | seed=seed or torch.random.seed(), | ||
| 378 | sample_batches=sample_batches, | ||
| 379 | sample_batch_size=sample_batch_size | ||
| 380 | ) | ||
| 381 | |||
| 382 | self.accelerator = accelerator | ||
| 383 | self.vae = vae | ||
| 384 | self.unet = unet | ||
| 385 | self.tokenizer = tokenizer | ||
| 386 | self.text_encoder = text_encoder | ||
| 387 | self.unet_lora = unet_lora | ||
| 388 | self.scheduler = scheduler | ||
| 389 | |||
| 390 | @torch.no_grad() | ||
| 391 | def save_model(self): | ||
| 392 | print("Saving model...") | ||
| 393 | |||
| 394 | unet_lora = self.accelerator.unwrap_model(self.unet_lora) | ||
| 395 | unet_lora.save_pretrained(self.output_dir.joinpath("model")) | ||
| 396 | |||
| 397 | del unet_lora | ||
| 398 | |||
| 399 | if torch.cuda.is_available(): | ||
| 400 | torch.cuda.empty_cache() | ||
| 401 | |||
| 402 | @torch.no_grad() | ||
| 403 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
| 404 | # Save a sample image | ||
| 405 | pipeline = VlpnStableDiffusion( | ||
| 406 | text_encoder=self.text_encoder, | ||
| 407 | vae=self.vae, | ||
| 408 | unet=self.unet, | ||
| 409 | tokenizer=self.tokenizer, | ||
| 410 | scheduler=self.scheduler, | ||
| 411 | ).to(self.accelerator.device) | ||
| 412 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 413 | |||
| 414 | super().save_samples(pipeline, step, num_inference_steps, guidance_scale, eta) | ||
| 415 | |||
| 416 | del pipeline | ||
| 417 | del generator | ||
| 418 | del stable_latents | ||
| 419 | |||
| 420 | if torch.cuda.is_available(): | ||
| 421 | torch.cuda.empty_cache() | ||
| 422 | |||
| 423 | |||
| 424 | def main(): | ||
| 425 | args = parse_args() | ||
| 426 | |||
| 427 | instance_identifier = args.instance_identifier | ||
| 428 | |||
| 429 | if len(args.placeholder_token) != 0: | ||
| 430 | instance_identifier = instance_identifier.format(args.placeholder_token[0]) | ||
| 431 | |||
| 432 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 433 | basepath = Path(args.output_dir).joinpath(slugify(instance_identifier), now) | ||
| 434 | basepath.mkdir(parents=True, exist_ok=True) | ||
| 435 | |||
| 436 | accelerator = Accelerator( | ||
| 437 | log_with=LoggerType.TENSORBOARD, | ||
| 438 | logging_dir=f"{basepath}", | ||
| 439 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 440 | mixed_precision=args.mixed_precision | ||
| 441 | ) | ||
| 442 | |||
| 443 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
| 444 | |||
| 445 | args.seed = args.seed or (torch.random.seed() >> 32) | ||
| 446 | set_seed(args.seed) | ||
| 447 | |||
| 448 | save_args(basepath, args) | ||
| 449 | |||
| 450 | # Load the tokenizer and add the placeholder token as a additional special token | ||
| 451 | if args.tokenizer_name: | ||
| 452 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
| 453 | elif args.pretrained_model_name_or_path: | ||
| 454 | tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') | ||
| 455 | |||
| 456 | # Load models and create wrapper for stable diffusion | ||
| 457 | text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') | ||
| 458 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') | ||
| 459 | unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') | ||
| 460 | noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder='scheduler') | ||
| 461 | checkpoint_scheduler = DPMSolverMultistepScheduler.from_pretrained( | ||
| 462 | args.pretrained_model_name_or_path, subfolder='scheduler') | ||
| 463 | |||
| 464 | unet_lora = LoraAttnProcessor( | ||
| 465 | cross_attention_dim=unet.cross_attention_dim, | ||
| 466 | inner_dim=unet.in_channels, | ||
| 467 | r=4, | ||
| 468 | ) | ||
| 469 | |||
| 470 | vae.enable_slicing() | ||
| 471 | vae.set_use_memory_efficient_attention_xformers(True) | ||
| 472 | unet.set_use_memory_efficient_attention_xformers(True) | ||
| 473 | unet.set_attn_processor(unet_lora) | ||
| 474 | |||
| 475 | if args.gradient_checkpointing: | ||
| 476 | unet.enable_gradient_checkpointing() | ||
| 477 | text_encoder.gradient_checkpointing_enable() | ||
| 478 | |||
| 479 | # Freeze text_encoder and vae | ||
| 480 | vae.requires_grad_(False) | ||
| 481 | unet.requires_grad_(False) | ||
| 482 | |||
| 483 | if args.embeddings_dir is not None: | ||
| 484 | embeddings_dir = Path(args.embeddings_dir) | ||
| 485 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
| 486 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
| 487 | added_tokens = load_text_embeddings(tokenizer, text_encoder, embeddings_dir) | ||
| 488 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {added_tokens}") | ||
| 489 | |||
| 490 | if len(args.placeholder_token) != 0: | ||
| 491 | # Convert the initializer_token, placeholder_token to ids | ||
| 492 | initializer_token_ids = torch.stack([ | ||
| 493 | torch.tensor(tokenizer.encode(token, add_special_tokens=False)[:1]) | ||
| 494 | for token in args.initializer_token | ||
| 495 | ]) | ||
| 496 | |||
| 497 | num_added_tokens = tokenizer.add_tokens(args.placeholder_token) | ||
| 498 | print(f"Added {num_added_tokens} new tokens.") | ||
| 499 | |||
| 500 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | ||
| 501 | |||
| 502 | # Resize the token embeddings as we are adding new special tokens to the tokenizer | ||
| 503 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
| 504 | |||
| 505 | token_embeds = text_encoder.get_input_embeddings().weight.data | ||
| 506 | original_token_embeds = token_embeds.clone().to(accelerator.device) | ||
| 507 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | ||
| 508 | |||
| 509 | for (token_id, embeddings) in zip(placeholder_token_id, initializer_token_embeddings): | ||
| 510 | token_embeds[token_id] = embeddings | ||
| 511 | else: | ||
| 512 | placeholder_token_id = [] | ||
| 513 | |||
| 514 | print(f"Training added text embeddings") | ||
| 515 | |||
| 516 | text_encoder.text_model.encoder.requires_grad_(False) | ||
| 517 | text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
| 518 | text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | ||
| 519 | |||
| 520 | index_fixed_tokens = torch.arange(len(tokenizer)) | ||
| 521 | index_fixed_tokens = index_fixed_tokens[~torch.isin(index_fixed_tokens, torch.tensor(placeholder_token_id))] | ||
| 522 | |||
| 523 | prompt_processor = PromptProcessor(tokenizer, text_encoder) | ||
| 524 | |||
| 525 | if args.scale_lr: | ||
| 526 | args.learning_rate = ( | ||
| 527 | args.learning_rate * args.gradient_accumulation_steps * | ||
| 528 | args.train_batch_size * accelerator.num_processes | ||
| 529 | ) | ||
| 530 | |||
| 531 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
| 532 | if args.use_8bit_adam: | ||
| 533 | try: | ||
| 534 | import bitsandbytes as bnb | ||
| 535 | except ImportError: | ||
| 536 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
| 537 | |||
| 538 | optimizer_class = bnb.optim.AdamW8bit | ||
| 539 | else: | ||
| 540 | optimizer_class = torch.optim.AdamW | ||
| 541 | |||
| 542 | # Initialize the optimizer | ||
| 543 | optimizer = optimizer_class( | ||
| 544 | [ | ||
| 545 | { | ||
| 546 | 'params': unet_lora.parameters(), | ||
| 547 | 'lr': args.learning_rate, | ||
| 548 | }, | ||
| 549 | ], | ||
| 550 | betas=(args.adam_beta1, args.adam_beta2), | ||
| 551 | weight_decay=args.adam_weight_decay, | ||
| 552 | eps=args.adam_epsilon, | ||
| 553 | ) | ||
| 554 | |||
| 555 | weight_dtype = torch.float32 | ||
| 556 | if args.mixed_precision == "fp16": | ||
| 557 | weight_dtype = torch.float16 | ||
| 558 | elif args.mixed_precision == "bf16": | ||
| 559 | weight_dtype = torch.bfloat16 | ||
| 560 | |||
| 561 | def collate_fn(examples): | ||
| 562 | prompts = [example["prompts"] for example in examples] | ||
| 563 | nprompts = [example["nprompts"] for example in examples] | ||
| 564 | input_ids = [example["instance_prompt_ids"] for example in examples] | ||
| 565 | pixel_values = [example["instance_images"] for example in examples] | ||
| 566 | |||
| 567 | # concat class and instance examples for prior preservation | ||
| 568 | if args.num_class_images != 0 and "class_prompt_ids" in examples[0]: | ||
| 569 | input_ids += [example["class_prompt_ids"] for example in examples] | ||
| 570 | pixel_values += [example["class_images"] for example in examples] | ||
| 571 | |||
| 572 | pixel_values = torch.stack(pixel_values) | ||
| 573 | pixel_values = pixel_values.to(dtype=weight_dtype, memory_format=torch.contiguous_format) | ||
| 574 | |||
| 575 | inputs = prompt_processor.unify_input_ids(input_ids) | ||
| 576 | |||
| 577 | batch = { | ||
| 578 | "prompts": prompts, | ||
| 579 | "nprompts": nprompts, | ||
| 580 | "input_ids": inputs.input_ids, | ||
| 581 | "pixel_values": pixel_values, | ||
| 582 | "attention_mask": inputs.attention_mask, | ||
| 583 | } | ||
| 584 | return batch | ||
| 585 | |||
| 586 | datamodule = CSVDataModule( | ||
| 587 | data_file=args.train_data_file, | ||
| 588 | batch_size=args.train_batch_size, | ||
| 589 | prompt_processor=prompt_processor, | ||
| 590 | instance_identifier=instance_identifier, | ||
| 591 | class_identifier=args.class_identifier, | ||
| 592 | class_subdir="cls", | ||
| 593 | num_class_images=args.num_class_images, | ||
| 594 | size=args.resolution, | ||
| 595 | repeats=args.repeats, | ||
| 596 | mode=args.mode, | ||
| 597 | dropout=args.tag_dropout, | ||
| 598 | center_crop=args.center_crop, | ||
| 599 | template_key=args.train_data_template, | ||
| 600 | valid_set_size=args.valid_set_size, | ||
| 601 | num_workers=args.dataloader_num_workers, | ||
| 602 | collate_fn=collate_fn | ||
| 603 | ) | ||
| 604 | |||
| 605 | datamodule.prepare_data() | ||
| 606 | datamodule.setup() | ||
| 607 | |||
| 608 | if args.num_class_images != 0: | ||
| 609 | missing_data = [item for item in datamodule.data_train if not item.class_image_path.exists()] | ||
| 610 | |||
| 611 | if len(missing_data) != 0: | ||
| 612 | batched_data = [ | ||
| 613 | missing_data[i:i+args.sample_batch_size] | ||
| 614 | for i in range(0, len(missing_data), args.sample_batch_size) | ||
| 615 | ] | ||
| 616 | |||
| 617 | pipeline = VlpnStableDiffusion( | ||
| 618 | text_encoder=text_encoder, | ||
| 619 | vae=vae, | ||
| 620 | unet=unet, | ||
| 621 | tokenizer=tokenizer, | ||
| 622 | scheduler=checkpoint_scheduler, | ||
| 623 | ).to(accelerator.device) | ||
| 624 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 625 | |||
| 626 | with torch.autocast("cuda"), torch.inference_mode(): | ||
| 627 | for batch in batched_data: | ||
| 628 | image_name = [item.class_image_path for item in batch] | ||
| 629 | prompt = [item.prompt.format(identifier=args.class_identifier) for item in batch] | ||
| 630 | nprompt = [item.nprompt for item in batch] | ||
| 631 | |||
| 632 | images = pipeline( | ||
| 633 | prompt=prompt, | ||
| 634 | negative_prompt=nprompt, | ||
| 635 | num_inference_steps=args.sample_steps | ||
| 636 | ).images | ||
| 637 | |||
| 638 | for i, image in enumerate(images): | ||
| 639 | image.save(image_name[i]) | ||
| 640 | |||
| 641 | del pipeline | ||
| 642 | |||
| 643 | if torch.cuda.is_available(): | ||
| 644 | torch.cuda.empty_cache() | ||
| 645 | |||
| 646 | train_dataloader = datamodule.train_dataloader() | ||
| 647 | val_dataloader = datamodule.val_dataloader() | ||
| 648 | |||
| 649 | # Scheduler and math around the number of training steps. | ||
| 650 | overrode_max_train_steps = False | ||
| 651 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
| 652 | if args.max_train_steps is None: | ||
| 653 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 654 | overrode_max_train_steps = True | ||
| 655 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
| 656 | |||
| 657 | warmup_steps = args.lr_warmup_epochs * num_update_steps_per_epoch * args.gradient_accumulation_steps | ||
| 658 | |||
| 659 | if args.lr_scheduler == "one_cycle": | ||
| 660 | lr_scheduler = get_one_cycle_schedule( | ||
| 661 | optimizer=optimizer, | ||
| 662 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
| 663 | ) | ||
| 664 | elif args.lr_scheduler == "cosine_with_restarts": | ||
| 665 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | ||
| 666 | optimizer=optimizer, | ||
| 667 | num_warmup_steps=warmup_steps, | ||
| 668 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
| 669 | num_cycles=args.lr_cycles or math.ceil(math.sqrt( | ||
| 670 | ((args.max_train_steps - warmup_steps) / num_update_steps_per_epoch))), | ||
| 671 | ) | ||
| 672 | else: | ||
| 673 | lr_scheduler = get_scheduler( | ||
| 674 | args.lr_scheduler, | ||
| 675 | optimizer=optimizer, | ||
| 676 | num_warmup_steps=warmup_steps, | ||
| 677 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
| 678 | ) | ||
| 679 | |||
| 680 | unet_lora, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 681 | unet_lora, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
| 682 | ) | ||
| 683 | |||
| 684 | # Move text_encoder and vae to device | ||
| 685 | vae.to(accelerator.device, dtype=weight_dtype) | ||
| 686 | unet.to(accelerator.device, dtype=weight_dtype) | ||
| 687 | text_encoder.to(accelerator.device, dtype=weight_dtype) | ||
| 688 | |||
| 689 | # Keep text_encoder and vae in eval mode as we don't train these | ||
| 690 | vae.eval() | ||
| 691 | unet.eval() | ||
| 692 | text_encoder.eval() | ||
| 693 | |||
| 694 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
| 695 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
| 696 | if overrode_max_train_steps: | ||
| 697 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 698 | |||
| 699 | num_val_steps_per_epoch = len(val_dataloader) | ||
| 700 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
| 701 | val_steps = num_val_steps_per_epoch * num_epochs | ||
| 702 | |||
| 703 | # We need to initialize the trackers we use, and also store our configuration. | ||
| 704 | # The trackers initializes automatically on the main process. | ||
| 705 | if accelerator.is_main_process: | ||
| 706 | config = vars(args).copy() | ||
| 707 | config["initializer_token"] = " ".join(config["initializer_token"]) | ||
| 708 | config["placeholder_token"] = " ".join(config["placeholder_token"]) | ||
| 709 | accelerator.init_trackers("lora", config=config) | ||
| 710 | |||
| 711 | # Train! | ||
| 712 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
| 713 | |||
| 714 | logger.info("***** Running training *****") | ||
| 715 | logger.info(f" Num Epochs = {num_epochs}") | ||
| 716 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
| 717 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
| 718 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
| 719 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
| 720 | # Only show the progress bar once on each machine. | ||
| 721 | |||
| 722 | global_step = 0 | ||
| 723 | |||
| 724 | avg_loss = AverageMeter() | ||
| 725 | avg_acc = AverageMeter() | ||
| 726 | |||
| 727 | avg_loss_val = AverageMeter() | ||
| 728 | avg_acc_val = AverageMeter() | ||
| 729 | |||
| 730 | max_acc_val = 0.0 | ||
| 731 | |||
| 732 | checkpointer = Checkpointer( | ||
| 733 | datamodule=datamodule, | ||
| 734 | accelerator=accelerator, | ||
| 735 | vae=vae, | ||
| 736 | unet=unet, | ||
| 737 | tokenizer=tokenizer, | ||
| 738 | text_encoder=text_encoder, | ||
| 739 | scheduler=checkpoint_scheduler, | ||
| 740 | unet_lora=unet_lora, | ||
| 741 | output_dir=basepath, | ||
| 742 | instance_identifier=instance_identifier, | ||
| 743 | placeholder_token=args.placeholder_token, | ||
| 744 | placeholder_token_id=placeholder_token_id, | ||
| 745 | sample_image_size=args.sample_image_size, | ||
| 746 | sample_batch_size=args.sample_batch_size, | ||
| 747 | sample_batches=args.sample_batches, | ||
| 748 | seed=args.seed | ||
| 749 | ) | ||
| 750 | |||
| 751 | if accelerator.is_main_process: | ||
| 752 | checkpointer.save_samples(0, args.sample_steps) | ||
| 753 | |||
| 754 | local_progress_bar = tqdm( | ||
| 755 | range(num_update_steps_per_epoch + num_val_steps_per_epoch), | ||
| 756 | disable=not accelerator.is_local_main_process, | ||
| 757 | dynamic_ncols=True | ||
| 758 | ) | ||
| 759 | local_progress_bar.set_description("Epoch X / Y") | ||
| 760 | |||
| 761 | global_progress_bar = tqdm( | ||
| 762 | range(args.max_train_steps + val_steps), | ||
| 763 | disable=not accelerator.is_local_main_process, | ||
| 764 | dynamic_ncols=True | ||
| 765 | ) | ||
| 766 | global_progress_bar.set_description("Total progress") | ||
| 767 | |||
| 768 | try: | ||
| 769 | for epoch in range(num_epochs): | ||
| 770 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
| 771 | local_progress_bar.reset() | ||
| 772 | |||
| 773 | unet_lora.train() | ||
| 774 | |||
| 775 | for step, batch in enumerate(train_dataloader): | ||
| 776 | with accelerator.accumulate(unet_lora): | ||
| 777 | # Convert images to latent space | ||
| 778 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
| 779 | latents = latents * 0.18215 | ||
| 780 | |||
| 781 | # Sample noise that we'll add to the latents | ||
| 782 | noise = torch.randn_like(latents) | ||
| 783 | bsz = latents.shape[0] | ||
| 784 | # Sample a random timestep for each image | ||
| 785 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
| 786 | (bsz,), device=latents.device) | ||
| 787 | timesteps = timesteps.long() | ||
| 788 | |||
| 789 | # Add noise to the latents according to the noise magnitude at each timestep | ||
| 790 | # (this is the forward diffusion process) | ||
| 791 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 792 | |||
| 793 | # Get the text embedding for conditioning | ||
| 794 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | ||
| 795 | |||
| 796 | # Predict the noise residual | ||
| 797 | model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 798 | |||
| 799 | # Get the target for loss depending on the prediction type | ||
| 800 | if noise_scheduler.config.prediction_type == "epsilon": | ||
| 801 | target = noise | ||
| 802 | elif noise_scheduler.config.prediction_type == "v_prediction": | ||
| 803 | target = noise_scheduler.get_velocity(latents, noise, timesteps) | ||
| 804 | else: | ||
| 805 | raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | ||
| 806 | |||
| 807 | if args.num_class_images != 0: | ||
| 808 | # Chunk the noise and model_pred into two parts and compute the loss on each part separately. | ||
| 809 | model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | ||
| 810 | target, target_prior = torch.chunk(target, 2, dim=0) | ||
| 811 | |||
| 812 | # Compute instance loss | ||
| 813 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 814 | |||
| 815 | # Compute prior loss | ||
| 816 | prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") | ||
| 817 | |||
| 818 | # Add the prior loss to the instance loss. | ||
| 819 | loss = loss + args.prior_loss_weight * prior_loss | ||
| 820 | else: | ||
| 821 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 822 | |||
| 823 | acc = (model_pred == latents).float().mean() | ||
| 824 | |||
| 825 | accelerator.backward(loss) | ||
| 826 | |||
| 827 | if accelerator.sync_gradients: | ||
| 828 | accelerator.clip_grad_norm_(unet_lora.parameters(), args.max_grad_norm) | ||
| 829 | |||
| 830 | optimizer.step() | ||
| 831 | if not accelerator.optimizer_step_was_skipped: | ||
| 832 | lr_scheduler.step() | ||
| 833 | optimizer.zero_grad(set_to_none=True) | ||
| 834 | |||
| 835 | with torch.no_grad(): | ||
| 836 | text_encoder.get_input_embeddings( | ||
| 837 | ).weight[index_fixed_tokens] = original_token_embeds[index_fixed_tokens] | ||
| 838 | |||
| 839 | avg_loss.update(loss.detach_(), bsz) | ||
| 840 | avg_acc.update(acc.detach_(), bsz) | ||
| 841 | |||
| 842 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
| 843 | if accelerator.sync_gradients: | ||
| 844 | local_progress_bar.update(1) | ||
| 845 | global_progress_bar.update(1) | ||
| 846 | |||
| 847 | global_step += 1 | ||
| 848 | |||
| 849 | logs = { | ||
| 850 | "train/loss": avg_loss.avg.item(), | ||
| 851 | "train/acc": avg_acc.avg.item(), | ||
| 852 | "train/cur_loss": loss.item(), | ||
| 853 | "train/cur_acc": acc.item(), | ||
| 854 | "lr/unet": lr_scheduler.get_last_lr()[0], | ||
| 855 | "lr/text": lr_scheduler.get_last_lr()[1] | ||
| 856 | } | ||
| 857 | |||
| 858 | accelerator.log(logs, step=global_step) | ||
| 859 | |||
| 860 | local_progress_bar.set_postfix(**logs) | ||
| 861 | |||
| 862 | if global_step >= args.max_train_steps: | ||
| 863 | break | ||
| 864 | |||
| 865 | accelerator.wait_for_everyone() | ||
| 866 | |||
| 867 | unet_lora.eval() | ||
| 868 | |||
| 869 | with torch.inference_mode(): | ||
| 870 | for step, batch in enumerate(val_dataloader): | ||
| 871 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
| 872 | latents = latents * 0.18215 | ||
| 873 | |||
| 874 | noise = torch.randn_like(latents) | ||
| 875 | bsz = latents.shape[0] | ||
| 876 | timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, | ||
| 877 | (bsz,), device=latents.device) | ||
| 878 | timesteps = timesteps.long() | ||
| 879 | |||
| 880 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 881 | |||
| 882 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | ||
| 883 | |||
| 884 | model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 885 | |||
| 886 | # Get the target for loss depending on the prediction type | ||
| 887 | if noise_scheduler.config.prediction_type == "epsilon": | ||
| 888 | target = noise | ||
| 889 | elif noise_scheduler.config.prediction_type == "v_prediction": | ||
| 890 | target = noise_scheduler.get_velocity(latents, noise, timesteps) | ||
| 891 | else: | ||
| 892 | raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | ||
| 893 | |||
| 894 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 895 | |||
| 896 | acc = (model_pred == latents).float().mean() | ||
| 897 | |||
| 898 | avg_loss_val.update(loss.detach_(), bsz) | ||
| 899 | avg_acc_val.update(acc.detach_(), bsz) | ||
| 900 | |||
| 901 | if accelerator.sync_gradients: | ||
| 902 | local_progress_bar.update(1) | ||
| 903 | global_progress_bar.update(1) | ||
| 904 | |||
| 905 | logs = { | ||
| 906 | "val/loss": avg_loss_val.avg.item(), | ||
| 907 | "val/acc": avg_acc_val.avg.item(), | ||
| 908 | "val/cur_loss": loss.item(), | ||
| 909 | "val/cur_acc": acc.item(), | ||
| 910 | } | ||
| 911 | local_progress_bar.set_postfix(**logs) | ||
| 912 | |||
| 913 | accelerator.log({ | ||
| 914 | "val/loss": avg_loss_val.avg.item(), | ||
| 915 | "val/acc": avg_acc_val.avg.item(), | ||
| 916 | }, step=global_step) | ||
| 917 | |||
| 918 | local_progress_bar.clear() | ||
| 919 | global_progress_bar.clear() | ||
| 920 | |||
| 921 | if avg_acc_val.avg.item() > max_acc_val: | ||
| 922 | accelerator.print( | ||
| 923 | f"Global step {global_step}: Validation accuracy reached new maximum: {max_acc_val:.2e} -> {avg_acc_val.avg.item():.2e}") | ||
| 924 | max_acc_val = avg_acc_val.avg.item() | ||
| 925 | |||
| 926 | if accelerator.is_main_process: | ||
| 927 | if (epoch + 1) % args.sample_frequency == 0: | ||
| 928 | checkpointer.save_samples(global_step, args.sample_steps) | ||
| 929 | |||
| 930 | # Create the pipeline using using the trained modules and save it. | ||
| 931 | if accelerator.is_main_process: | ||
| 932 | print("Finished! Saving final checkpoint and resume state.") | ||
| 933 | checkpointer.save_model() | ||
| 934 | |||
| 935 | accelerator.end_training() | ||
| 936 | |||
| 937 | except KeyboardInterrupt: | ||
| 938 | if accelerator.is_main_process: | ||
| 939 | print("Interrupted, saving checkpoint and resume state...") | ||
| 940 | checkpointer.save_model() | ||
| 941 | accelerator.end_training() | ||
| 942 | quit() | ||
| 943 | |||
| 944 | |||
| 945 | if __name__ == "__main__": | ||
| 946 | main() | ||
diff --git a/train_ti.py b/train_ti.py index 8ada98c..5df6850 100644 --- a/train_ti.py +++ b/train_ti.py | |||
| @@ -3,9 +3,9 @@ import math | |||
| 3 | import datetime | 3 | import datetime |
| 4 | import logging | 4 | import logging |
| 5 | from pathlib import Path | 5 | from pathlib import Path |
| 6 | from functools import partial | ||
| 6 | 7 | ||
| 7 | import torch | 8 | import torch |
| 8 | import torch.nn.functional as F | ||
| 9 | import torch.utils.checkpoint | 9 | import torch.utils.checkpoint |
| 10 | 10 | ||
| 11 | from accelerate import Accelerator | 11 | from accelerate import Accelerator |
| @@ -18,9 +18,10 @@ from tqdm.auto import tqdm | |||
| 18 | from transformers import CLIPTextModel | 18 | from transformers import CLIPTextModel |
| 19 | from slugify import slugify | 19 | from slugify import slugify |
| 20 | 20 | ||
| 21 | from common import load_config, load_embeddings_from_dir | 21 | from util import load_config, load_embeddings_from_dir |
| 22 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 22 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 23 | from data.csv import CSVDataModule, CSVDataItem | 23 | from data.csv import CSVDataModule, CSVDataItem |
| 24 | from training.common import run_model | ||
| 24 | from training.optimization import get_one_cycle_schedule | 25 | from training.optimization import get_one_cycle_schedule |
| 25 | from training.lr import LRFinder | 26 | from training.lr import LRFinder |
| 26 | from training.util import AverageMeter, CheckpointerBase, save_args | 27 | from training.util import AverageMeter, CheckpointerBase, save_args |
| @@ -570,8 +571,8 @@ def main(): | |||
| 570 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | 571 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): |
| 571 | raise ValueError("--embeddings_dir must point to an existing directory") | 572 | raise ValueError("--embeddings_dir must point to an existing directory") |
| 572 | 573 | ||
| 573 | added_tokens_from_dir = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | 574 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) |
| 574 | print(f"Added {len(added_tokens_from_dir)} tokens from embeddings dir: {added_tokens_from_dir}") | 575 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {zip(added_tokens, added_ids)}") |
| 575 | 576 | ||
| 576 | # Convert the initializer_token, placeholder_token to ids | 577 | # Convert the initializer_token, placeholder_token to ids |
| 577 | initializer_token_ids = [ | 578 | initializer_token_ids = [ |
| @@ -579,13 +580,15 @@ def main(): | |||
| 579 | for token in args.initializer_token | 580 | for token in args.initializer_token |
| 580 | ] | 581 | ] |
| 581 | 582 | ||
| 582 | new_tokens = tokenizer.add_multi_tokens(args.placeholder_token, args.num_vectors) | 583 | new_ids = tokenizer.add_multi_tokens(args.placeholder_token, args.num_vectors) |
| 583 | embeddings.resize(len(tokenizer)) | 584 | embeddings.resize(len(tokenizer)) |
| 584 | 585 | ||
| 585 | for (new_token, init_ids) in zip(new_tokens, initializer_token_ids): | 586 | init_ratios = [ |
| 586 | embeddings.add_embed(new_token.ids, init_ids) | 587 | embeddings.add_embed(new_id, init_ids) |
| 588 | for (new_id, init_ids) in zip(new_ids, initializer_token_ids) | ||
| 589 | ] | ||
| 587 | 590 | ||
| 588 | print(f"Added {len(new_tokens)} new tokens.") | 591 | print(f"Added {len(new_ids)} new tokens: {zip(args.placeholder_token, new_ids, init_ratios)}") |
| 589 | 592 | ||
| 590 | vae.requires_grad_(False) | 593 | vae.requires_grad_(False) |
| 591 | unet.requires_grad_(False) | 594 | unet.requires_grad_(False) |
| @@ -807,63 +810,16 @@ def main(): | |||
| 807 | def on_eval(): | 810 | def on_eval(): |
| 808 | tokenizer.eval() | 811 | tokenizer.eval() |
| 809 | 812 | ||
| 810 | def loop(step: int, batch, eval: bool = False): | 813 | loop = partial( |
| 811 | # Convert images to latent space | 814 | run_model, |
| 812 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach() | 815 | vae=vae, |
| 813 | latents = latents * 0.18215 | 816 | noise_scheduler=noise_scheduler, |
| 814 | 817 | unet=unet, | |
| 815 | # Sample noise that we'll add to the latents | 818 | prompt_processor=prompt_processor, |
| 816 | noise = torch.randn_like(latents) | 819 | num_class_images=args.num_class_images, |
| 817 | bsz = latents.shape[0] | 820 | prior_loss_weight=args.prior_loss_weight, |
| 818 | # Sample a random timestep for each image | 821 | seed=args.seed, |
| 819 | timesteps_gen = torch.Generator(device=latents.device).manual_seed(args.seed + step) if eval else None | 822 | ) |
| 820 | timesteps = torch.randint( | ||
| 821 | 0, | ||
| 822 | noise_scheduler.config.num_train_timesteps, | ||
| 823 | (bsz,), | ||
| 824 | generator=timesteps_gen, | ||
| 825 | device=latents.device, | ||
| 826 | ) | ||
| 827 | timesteps = timesteps.long() | ||
| 828 | |||
| 829 | # Add noise to the latents according to the noise magnitude at each timestep | ||
| 830 | # (this is the forward diffusion process) | ||
| 831 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 832 | |||
| 833 | # Get the text embedding for conditioning | ||
| 834 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | ||
| 835 | encoder_hidden_states = encoder_hidden_states.to(dtype=weight_dtype) | ||
| 836 | |||
| 837 | # Predict the noise residual | ||
| 838 | model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 839 | |||
| 840 | # Get the target for loss depending on the prediction type | ||
| 841 | if noise_scheduler.config.prediction_type == "epsilon": | ||
| 842 | target = noise | ||
| 843 | elif noise_scheduler.config.prediction_type == "v_prediction": | ||
| 844 | target = noise_scheduler.get_velocity(latents, noise, timesteps) | ||
| 845 | else: | ||
| 846 | raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | ||
| 847 | |||
| 848 | if args.num_class_images != 0: | ||
| 849 | # Chunk the noise and model_pred into two parts and compute the loss on each part separately. | ||
| 850 | model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | ||
| 851 | target, target_prior = torch.chunk(target, 2, dim=0) | ||
| 852 | |||
| 853 | # Compute instance loss | ||
| 854 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 855 | |||
| 856 | # Compute prior loss | ||
| 857 | prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") | ||
| 858 | |||
| 859 | # Add the prior loss to the instance loss. | ||
| 860 | loss = loss + args.prior_loss_weight * prior_loss | ||
| 861 | else: | ||
| 862 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 863 | |||
| 864 | acc = (model_pred == target).float().mean() | ||
| 865 | |||
| 866 | return loss, acc, bsz | ||
| 867 | 823 | ||
| 868 | # We need to initialize the trackers we use, and also store our configuration. | 824 | # We need to initialize the trackers we use, and also store our configuration. |
| 869 | # The trackers initializes automatically on the main process. | 825 | # The trackers initializes automatically on the main process. |
diff --git a/training/common.py b/training/common.py new file mode 100644 index 0000000..99a6e67 --- /dev/null +++ b/training/common.py | |||
| @@ -0,0 +1,75 @@ | |||
| 1 | import torch | ||
| 2 | import torch.nn.functional as F | ||
| 3 | |||
| 4 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel | ||
| 5 | |||
| 6 | |||
| 7 | def run_model( | ||
| 8 | vae: AutoencoderKL, | ||
| 9 | noise_scheduler: DDPMScheduler, | ||
| 10 | unet: UNet2DConditionModel, | ||
| 11 | prompt_processor, | ||
| 12 | num_class_images: int, | ||
| 13 | prior_loss_weight: float, | ||
| 14 | seed: int, | ||
| 15 | step: int, | ||
| 16 | batch, | ||
| 17 | eval: bool = False | ||
| 18 | ): | ||
| 19 | # Convert images to latent space | ||
| 20 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach() | ||
| 21 | latents = latents * 0.18215 | ||
| 22 | |||
| 23 | # Sample noise that we'll add to the latents | ||
| 24 | noise = torch.randn_like(latents) | ||
| 25 | bsz = latents.shape[0] | ||
| 26 | # Sample a random timestep for each image | ||
| 27 | timesteps_gen = torch.Generator(device=latents.device).manual_seed(seed + step) if eval else None | ||
| 28 | timesteps = torch.randint( | ||
| 29 | 0, | ||
| 30 | noise_scheduler.config.num_train_timesteps, | ||
| 31 | (bsz,), | ||
| 32 | generator=timesteps_gen, | ||
| 33 | device=latents.device, | ||
| 34 | ) | ||
| 35 | timesteps = timesteps.long() | ||
| 36 | |||
| 37 | # Add noise to the latents according to the noise magnitude at each timestep | ||
| 38 | # (this is the forward diffusion process) | ||
| 39 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 40 | noisy_latents = noisy_latents.to(dtype=unet.dtype) | ||
| 41 | |||
| 42 | # Get the text embedding for conditioning | ||
| 43 | encoder_hidden_states = prompt_processor.get_embeddings(batch["input_ids"], batch["attention_mask"]) | ||
| 44 | encoder_hidden_states = encoder_hidden_states.to(dtype=unet.dtype) | ||
| 45 | |||
| 46 | # Predict the noise residual | ||
| 47 | model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 48 | |||
| 49 | # Get the target for loss depending on the prediction type | ||
| 50 | if noise_scheduler.config.prediction_type == "epsilon": | ||
| 51 | target = noise | ||
| 52 | elif noise_scheduler.config.prediction_type == "v_prediction": | ||
| 53 | target = noise_scheduler.get_velocity(latents, noise, timesteps) | ||
| 54 | else: | ||
| 55 | raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | ||
| 56 | |||
| 57 | if num_class_images != 0: | ||
| 58 | # Chunk the noise and model_pred into two parts and compute the loss on each part separately. | ||
| 59 | model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | ||
| 60 | target, target_prior = torch.chunk(target, 2, dim=0) | ||
| 61 | |||
| 62 | # Compute instance loss | ||
| 63 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 64 | |||
| 65 | # Compute prior loss | ||
| 66 | prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") | ||
| 67 | |||
| 68 | # Add the prior loss to the instance loss. | ||
| 69 | loss = loss + prior_loss_weight * prior_loss | ||
| 70 | else: | ||
| 71 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 72 | |||
| 73 | acc = (model_pred == target).float().mean() | ||
| 74 | |||
| 75 | return loss, acc, bsz | ||
| @@ -24,8 +24,9 @@ def load_embeddings_from_dir(tokenizer: MultiCLIPTokenizer, embeddings: ManagedC | |||
| 24 | return [] | 24 | return [] |
| 25 | 25 | ||
| 26 | filenames = [filename for filename in embeddings_dir.iterdir() if filename.is_file()] | 26 | filenames = [filename for filename in embeddings_dir.iterdir() if filename.is_file()] |
| 27 | tokens = [filename.stem for filename in filenames] | ||
| 27 | 28 | ||
| 28 | new_tokens = [] | 29 | new_ids: list[list[int]] = [] |
| 29 | new_embeds = [] | 30 | new_embeds = [] |
| 30 | 31 | ||
| 31 | for filename in filenames: | 32 | for filename in filenames: |
| @@ -33,12 +34,12 @@ def load_embeddings_from_dir(tokenizer: MultiCLIPTokenizer, embeddings: ManagedC | |||
| 33 | embed = file.get_tensor("embed") | 34 | embed = file.get_tensor("embed") |
| 34 | 35 | ||
| 35 | added = tokenizer.add_multi_tokens(filename.stem, embed.shape[0]) | 36 | added = tokenizer.add_multi_tokens(filename.stem, embed.shape[0]) |
| 36 | new_tokens.append(added) | 37 | new_ids.append(added) |
| 37 | new_embeds.append(embed) | 38 | new_embeds.append(embed) |
| 38 | 39 | ||
| 39 | embeddings.resize(len(tokenizer)) | 40 | embeddings.resize(len(tokenizer)) |
| 40 | 41 | ||
| 41 | for (new_token, embeds) in zip(new_tokens, new_embeds): | 42 | for (new_id, embeds) in zip(new_ids, new_embeds): |
| 42 | embeddings.add_embed(new_token.ids, embeds) | 43 | embeddings.add_embed(new_id, embeds) |
| 43 | 44 | ||
| 44 | return new_tokens | 45 | return tokens, new_ids |
