diff options
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | data/dreambooth/csv.py | 177 | ||||
| -rw-r--r-- | data/dreambooth/prompt.py | 16 | ||||
| -rw-r--r-- | dreambooth.py | 825 |
4 files changed, 1019 insertions, 0 deletions
| @@ -160,5 +160,6 @@ cython_debug/ | |||
| 160 | #.idea/ | 160 | #.idea/ |
| 161 | 161 | ||
| 162 | text-inversion-model/ | 162 | text-inversion-model/ |
| 163 | dreambooth-model/ | ||
| 163 | conf*.json | 164 | conf*.json |
| 164 | v1-inference.yaml* | 165 | v1-inference.yaml* |
diff --git a/data/dreambooth/csv.py b/data/dreambooth/csv.py new file mode 100644 index 0000000..04df4c6 --- /dev/null +++ b/data/dreambooth/csv.py | |||
| @@ -0,0 +1,177 @@ | |||
| 1 | import os | ||
| 2 | import pandas as pd | ||
| 3 | from pathlib import Path | ||
| 4 | import PIL | ||
| 5 | import pytorch_lightning as pl | ||
| 6 | from PIL import Image | ||
| 7 | from torch.utils.data import Dataset, DataLoader, random_split | ||
| 8 | from torchvision import transforms | ||
| 9 | |||
| 10 | |||
| 11 | class CSVDataModule(pl.LightningDataModule): | ||
| 12 | def __init__(self, | ||
| 13 | batch_size, | ||
| 14 | data_root, | ||
| 15 | tokenizer, | ||
| 16 | instance_prompt, | ||
| 17 | class_data_root=None, | ||
| 18 | class_prompt=None, | ||
| 19 | size=512, | ||
| 20 | repeats=100, | ||
| 21 | interpolation="bicubic", | ||
| 22 | identifier="*", | ||
| 23 | center_crop=False, | ||
| 24 | collate_fn=None): | ||
| 25 | super().__init__() | ||
| 26 | |||
| 27 | self.data_root = data_root | ||
| 28 | self.tokenizer = tokenizer | ||
| 29 | self.instance_prompt = instance_prompt | ||
| 30 | self.class_data_root = class_data_root | ||
| 31 | self.class_prompt = class_prompt | ||
| 32 | self.size = size | ||
| 33 | self.repeats = repeats | ||
| 34 | self.identifier = identifier | ||
| 35 | self.center_crop = center_crop | ||
| 36 | self.interpolation = interpolation | ||
| 37 | self.collate_fn = collate_fn | ||
| 38 | self.batch_size = batch_size | ||
| 39 | |||
| 40 | def prepare_data(self): | ||
| 41 | metadata = pd.read_csv(f'{self.data_root}/list.csv') | ||
| 42 | image_paths = [os.path.join(self.data_root, f_path) for f_path in metadata['image'].values] | ||
| 43 | captions = [caption for caption in metadata['caption'].values] | ||
| 44 | skips = [skip for skip in metadata['skip'].values] | ||
| 45 | self.data_full = [(img, cap) for img, cap, skip in zip(image_paths, captions, skips) if skip != "x"] | ||
| 46 | |||
| 47 | def setup(self, stage=None): | ||
| 48 | train_set_size = int(len(self.data_full) * 0.8) | ||
| 49 | valid_set_size = len(self.data_full) - train_set_size | ||
| 50 | self.data_train, self.data_val = random_split(self.data_full, [train_set_size, valid_set_size]) | ||
| 51 | |||
| 52 | train_dataset = CSVDataset(self.data_train, self.tokenizer, instance_prompt=self.instance_prompt, | ||
| 53 | class_data_root=self.class_data_root, | ||
| 54 | class_prompt=self.class_prompt, size=self.size, repeats=self.repeats, | ||
| 55 | interpolation=self.interpolation, identifier=self.identifier, | ||
| 56 | center_crop=self.center_crop) | ||
| 57 | val_dataset = CSVDataset(self.data_val, self.tokenizer, instance_prompt=self.instance_prompt, | ||
| 58 | class_data_root=self.class_data_root, | ||
| 59 | class_prompt=self.class_prompt, size=self.size, interpolation=self.interpolation, | ||
| 60 | identifier=self.identifier, center_crop=self.center_crop) | ||
| 61 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, | ||
| 62 | shuffle=True, collate_fn=self.collate_fn) | ||
| 63 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, collate_fn=self.collate_fn) | ||
| 64 | |||
| 65 | def train_dataloader(self): | ||
| 66 | return self.train_dataloader_ | ||
| 67 | |||
| 68 | def val_dataloader(self): | ||
| 69 | return self.val_dataloader_ | ||
| 70 | |||
| 71 | |||
| 72 | class CSVDataset(Dataset): | ||
| 73 | def __init__(self, | ||
| 74 | data, | ||
| 75 | tokenizer, | ||
| 76 | instance_prompt, | ||
| 77 | class_data_root=None, | ||
| 78 | class_prompt=None, | ||
| 79 | size=512, | ||
| 80 | repeats=1, | ||
| 81 | interpolation="bicubic", | ||
| 82 | identifier="*", | ||
| 83 | center_crop=False, | ||
| 84 | ): | ||
| 85 | |||
| 86 | self.data = data | ||
| 87 | self.tokenizer = tokenizer | ||
| 88 | self.instance_prompt = instance_prompt | ||
| 89 | |||
| 90 | self.num_instance_images = len(self.data) | ||
| 91 | self._length = self.num_instance_images * repeats | ||
| 92 | |||
| 93 | self.identifier = identifier | ||
| 94 | |||
| 95 | if class_data_root is not None: | ||
| 96 | self.class_data_root = Path(class_data_root) | ||
| 97 | self.class_data_root.mkdir(parents=True, exist_ok=True) | ||
| 98 | |||
| 99 | self.class_images = list(Path(class_data_root).iterdir()) | ||
| 100 | self.num_class_images = len(self.class_images) | ||
| 101 | self._length = max(self.num_class_images, self.num_instance_images) | ||
| 102 | |||
| 103 | self.class_prompt = class_prompt | ||
| 104 | else: | ||
| 105 | self.class_data_root = None | ||
| 106 | |||
| 107 | self.interpolation = {"linear": PIL.Image.LINEAR, | ||
| 108 | "bilinear": PIL.Image.BILINEAR, | ||
| 109 | "bicubic": PIL.Image.BICUBIC, | ||
| 110 | "lanczos": PIL.Image.LANCZOS, | ||
| 111 | }[interpolation] | ||
| 112 | self.image_transforms = transforms.Compose( | ||
| 113 | [ | ||
| 114 | transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), | ||
| 115 | transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | ||
| 116 | transforms.ToTensor(), | ||
| 117 | transforms.Normalize([0.5], [0.5]), | ||
| 118 | ] | ||
| 119 | ) | ||
| 120 | |||
| 121 | self.cache = {} | ||
| 122 | |||
| 123 | def __len__(self): | ||
| 124 | return self._length | ||
| 125 | |||
| 126 | def get_example(self, i): | ||
| 127 | image_path, text = self.data[i % self.num_instance_images] | ||
| 128 | |||
| 129 | if image_path in self.cache: | ||
| 130 | return self.cache[image_path] | ||
| 131 | |||
| 132 | example = {} | ||
| 133 | |||
| 134 | instance_image = Image.open(image_path) | ||
| 135 | if not instance_image.mode == "RGB": | ||
| 136 | instance_image = instance_image.convert("RGB") | ||
| 137 | |||
| 138 | text = text.format(self.identifier) | ||
| 139 | |||
| 140 | example["prompts"] = text | ||
| 141 | example["instance_images"] = instance_image | ||
| 142 | example["instance_prompt_ids"] = self.tokenizer( | ||
| 143 | self.instance_prompt, | ||
| 144 | padding="do_not_pad", | ||
| 145 | truncation=True, | ||
| 146 | max_length=self.tokenizer.model_max_length, | ||
| 147 | ).input_ids | ||
| 148 | |||
| 149 | if self.class_data_root: | ||
| 150 | class_image = Image.open(self.class_images[i % self.num_class_images]) | ||
| 151 | if not class_image.mode == "RGB": | ||
| 152 | class_image = class_image.convert("RGB") | ||
| 153 | |||
| 154 | example["class_images"] = class_image | ||
| 155 | example["class_prompt_ids"] = self.tokenizer( | ||
| 156 | self.class_prompt, | ||
| 157 | padding="do_not_pad", | ||
| 158 | truncation=True, | ||
| 159 | max_length=self.tokenizer.model_max_length, | ||
| 160 | ).input_ids | ||
| 161 | |||
| 162 | self.cache[image_path] = example | ||
| 163 | return example | ||
| 164 | |||
| 165 | def __getitem__(self, i): | ||
| 166 | example = {} | ||
| 167 | unprocessed_example = self.get_example(i) | ||
| 168 | |||
| 169 | example["prompts"] = unprocessed_example["prompts"] | ||
| 170 | example["instance_images"] = self.image_transforms(unprocessed_example["instance_images"]) | ||
| 171 | example["instance_prompt_ids"] = unprocessed_example["instance_prompt_ids"] | ||
| 172 | |||
| 173 | if self.class_data_root: | ||
| 174 | example["class_images"] = self.image_transforms(unprocessed_example["class_images"]) | ||
| 175 | example["class_prompt_ids"] = unprocessed_example["class_prompt_ids"] | ||
| 176 | |||
| 177 | return example | ||
diff --git a/data/dreambooth/prompt.py b/data/dreambooth/prompt.py new file mode 100644 index 0000000..34f510d --- /dev/null +++ b/data/dreambooth/prompt.py | |||
| @@ -0,0 +1,16 @@ | |||
| 1 | from torch.utils.data import Dataset | ||
| 2 | |||
| 3 | |||
| 4 | class PromptDataset(Dataset): | ||
| 5 | def __init__(self, prompt, num_samples): | ||
| 6 | self.prompt = prompt | ||
| 7 | self.num_samples = num_samples | ||
| 8 | |||
| 9 | def __len__(self): | ||
| 10 | return self.num_samples | ||
| 11 | |||
| 12 | def __getitem__(self, index): | ||
| 13 | example = {} | ||
| 14 | example["prompt"] = self.prompt | ||
| 15 | example["index"] = index | ||
| 16 | return example | ||
diff --git a/dreambooth.py b/dreambooth.py new file mode 100644 index 0000000..b6b3594 --- /dev/null +++ b/dreambooth.py | |||
| @@ -0,0 +1,825 @@ | |||
| 1 | import argparse | ||
| 2 | import itertools | ||
| 3 | import math | ||
| 4 | import os | ||
| 5 | import datetime | ||
| 6 | from pathlib import Path | ||
| 7 | |||
| 8 | import numpy as np | ||
| 9 | import torch | ||
| 10 | import torch.nn.functional as F | ||
| 11 | import torch.utils.checkpoint | ||
| 12 | |||
| 13 | from accelerate import Accelerator | ||
| 14 | from accelerate.logging import get_logger | ||
| 15 | from accelerate.utils import LoggerType, set_seed | ||
| 16 | from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, LMSDiscreteScheduler, StableDiffusionPipeline, UNet2DConditionModel | ||
| 17 | from diffusers.optimization import get_scheduler | ||
| 18 | from pipelines.stable_diffusion.no_check import NoCheck | ||
| 19 | from PIL import Image | ||
| 20 | from tqdm.auto import tqdm | ||
| 21 | from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer | ||
| 22 | from slugify import slugify | ||
| 23 | import json | ||
| 24 | import os | ||
| 25 | |||
| 26 | from data.dreambooth.csv import CSVDataModule | ||
| 27 | from data.dreambooth.prompt import PromptDataset | ||
| 28 | |||
| 29 | logger = get_logger(__name__) | ||
| 30 | |||
| 31 | |||
| 32 | def parse_args(): | ||
| 33 | parser = argparse.ArgumentParser( | ||
| 34 | description="Simple example of a training script." | ||
| 35 | ) | ||
| 36 | parser.add_argument( | ||
| 37 | "--pretrained_model_name_or_path", | ||
| 38 | type=str, | ||
| 39 | default=None, | ||
| 40 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
| 41 | ) | ||
| 42 | parser.add_argument( | ||
| 43 | "--tokenizer_name", | ||
| 44 | type=str, | ||
| 45 | default=None, | ||
| 46 | help="Pretrained tokenizer name or path if not the same as model_name", | ||
| 47 | ) | ||
| 48 | parser.add_argument( | ||
| 49 | "--train_data_dir", | ||
| 50 | type=str, | ||
| 51 | default=None, | ||
| 52 | help="A folder containing the training data." | ||
| 53 | ) | ||
| 54 | parser.add_argument( | ||
| 55 | "--identifier", | ||
| 56 | type=str, | ||
| 57 | default=None, | ||
| 58 | help="A token to use as a placeholder for the concept.", | ||
| 59 | ) | ||
| 60 | parser.add_argument( | ||
| 61 | "--repeats", | ||
| 62 | type=int, | ||
| 63 | default=100, | ||
| 64 | help="How many times to repeat the training data.") | ||
| 65 | parser.add_argument( | ||
| 66 | "--output_dir", | ||
| 67 | type=str, | ||
| 68 | default="dreambooth-model", | ||
| 69 | help="The output directory where the model predictions and checkpoints will be written.", | ||
| 70 | ) | ||
| 71 | parser.add_argument( | ||
| 72 | "--seed", | ||
| 73 | type=int, | ||
| 74 | default=None, | ||
| 75 | help="A seed for reproducible training.") | ||
| 76 | parser.add_argument( | ||
| 77 | "--resolution", | ||
| 78 | type=int, | ||
| 79 | default=512, | ||
| 80 | help=( | ||
| 81 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
| 82 | " resolution" | ||
| 83 | ), | ||
| 84 | ) | ||
| 85 | parser.add_argument( | ||
| 86 | "--center_crop", | ||
| 87 | action="store_true", | ||
| 88 | help="Whether to center crop images before resizing to resolution" | ||
| 89 | ) | ||
| 90 | parser.add_argument( | ||
| 91 | "--num_train_epochs", | ||
| 92 | type=int, | ||
| 93 | default=100) | ||
| 94 | parser.add_argument( | ||
| 95 | "--max_train_steps", | ||
| 96 | type=int, | ||
| 97 | default=5000, | ||
| 98 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | ||
| 99 | ) | ||
| 100 | parser.add_argument( | ||
| 101 | "--gradient_accumulation_steps", | ||
| 102 | type=int, | ||
| 103 | default=1, | ||
| 104 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
| 105 | ) | ||
| 106 | parser.add_argument( | ||
| 107 | "--gradient_checkpointing", | ||
| 108 | action="store_true", | ||
| 109 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | ||
| 110 | ) | ||
| 111 | parser.add_argument( | ||
| 112 | "--learning_rate", | ||
| 113 | type=float, | ||
| 114 | default=1e-4, | ||
| 115 | help="Initial learning rate (after the potential warmup period) to use.", | ||
| 116 | ) | ||
| 117 | parser.add_argument( | ||
| 118 | "--scale_lr", | ||
| 119 | action="store_true", | ||
| 120 | default=True, | ||
| 121 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | ||
| 122 | ) | ||
| 123 | parser.add_argument( | ||
| 124 | "--lr_scheduler", | ||
| 125 | type=str, | ||
| 126 | default="constant", | ||
| 127 | help=( | ||
| 128 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | ||
| 129 | ' "constant", "constant_with_warmup"]' | ||
| 130 | ), | ||
| 131 | ) | ||
| 132 | parser.add_argument( | ||
| 133 | "--lr_warmup_steps", | ||
| 134 | type=int, | ||
| 135 | default=500, | ||
| 136 | help="Number of steps for the warmup in the lr scheduler." | ||
| 137 | ) | ||
| 138 | parser.add_argument( | ||
| 139 | "--adam_beta1", | ||
| 140 | type=float, | ||
| 141 | default=0.9, | ||
| 142 | help="The beta1 parameter for the Adam optimizer." | ||
| 143 | ) | ||
| 144 | parser.add_argument( | ||
| 145 | "--adam_beta2", | ||
| 146 | type=float, | ||
| 147 | default=0.999, | ||
| 148 | help="The beta2 parameter for the Adam optimizer." | ||
| 149 | ) | ||
| 150 | parser.add_argument( | ||
| 151 | "--adam_weight_decay", | ||
| 152 | type=float, | ||
| 153 | default=1e-2, | ||
| 154 | help="Weight decay to use." | ||
| 155 | ) | ||
| 156 | parser.add_argument( | ||
| 157 | "--adam_epsilon", | ||
| 158 | type=float, | ||
| 159 | default=1e-08, | ||
| 160 | help="Epsilon value for the Adam optimizer" | ||
| 161 | ) | ||
| 162 | parser.add_argument( | ||
| 163 | "--mixed_precision", | ||
| 164 | type=str, | ||
| 165 | default="no", | ||
| 166 | choices=["no", "fp16", "bf16"], | ||
| 167 | help=( | ||
| 168 | "Whether to use mixed precision. Choose" | ||
| 169 | "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | ||
| 170 | "and an Nvidia Ampere GPU." | ||
| 171 | ), | ||
| 172 | ) | ||
| 173 | parser.add_argument( | ||
| 174 | "--local_rank", | ||
| 175 | type=int, | ||
| 176 | default=-1, | ||
| 177 | help="For distributed training: local_rank" | ||
| 178 | ) | ||
| 179 | parser.add_argument( | ||
| 180 | "--checkpoint_frequency", | ||
| 181 | type=int, | ||
| 182 | default=500, | ||
| 183 | help="How often to save a checkpoint and sample image", | ||
| 184 | ) | ||
| 185 | parser.add_argument( | ||
| 186 | "--sample_image_size", | ||
| 187 | type=int, | ||
| 188 | default=512, | ||
| 189 | help="Size of sample images", | ||
| 190 | ) | ||
| 191 | parser.add_argument( | ||
| 192 | "--stable_sample_batches", | ||
| 193 | type=int, | ||
| 194 | default=1, | ||
| 195 | help="Number of fixed seed sample batches to generate per checkpoint", | ||
| 196 | ) | ||
| 197 | parser.add_argument( | ||
| 198 | "--random_sample_batches", | ||
| 199 | type=int, | ||
| 200 | default=1, | ||
| 201 | help="Number of random seed sample batches to generate per checkpoint", | ||
| 202 | ) | ||
| 203 | parser.add_argument( | ||
| 204 | "--sample_batch_size", | ||
| 205 | type=int, | ||
| 206 | default=1, | ||
| 207 | help="Number of samples to generate per batch", | ||
| 208 | ) | ||
| 209 | parser.add_argument( | ||
| 210 | "--train_batch_size", | ||
| 211 | type=int, | ||
| 212 | default=1, | ||
| 213 | help="Batch size (per device) for the training dataloader." | ||
| 214 | ) | ||
| 215 | parser.add_argument( | ||
| 216 | "--sample_steps", | ||
| 217 | type=int, | ||
| 218 | default=50, | ||
| 219 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | ||
| 220 | ) | ||
| 221 | parser.add_argument( | ||
| 222 | "--instance_prompt", | ||
| 223 | type=str, | ||
| 224 | default=None, | ||
| 225 | help="The prompt with identifier specifing the instance", | ||
| 226 | ) | ||
| 227 | parser.add_argument( | ||
| 228 | "--class_data_dir", | ||
| 229 | type=str, | ||
| 230 | default=None, | ||
| 231 | required=False, | ||
| 232 | help="A folder containing the training data of class images.", | ||
| 233 | ) | ||
| 234 | parser.add_argument( | ||
| 235 | "--class_prompt", | ||
| 236 | type=str, | ||
| 237 | default=None, | ||
| 238 | help="The prompt to specify images in the same class as provided intance images.", | ||
| 239 | ) | ||
| 240 | parser.add_argument( | ||
| 241 | "--with_prior_preservation", | ||
| 242 | default=False, | ||
| 243 | action="store_true", | ||
| 244 | help="Flag to add prior perservation loss.", | ||
| 245 | ) | ||
| 246 | parser.add_argument( | ||
| 247 | "--num_class_images", | ||
| 248 | type=int, | ||
| 249 | default=100, | ||
| 250 | help=( | ||
| 251 | "Minimal class images for prior perversation loss. If not have enough images, additional images will be" | ||
| 252 | " sampled with class_prompt." | ||
| 253 | ), | ||
| 254 | ) | ||
| 255 | parser.add_argument( | ||
| 256 | "--config", | ||
| 257 | type=str, | ||
| 258 | default=None, | ||
| 259 | help="Path to a JSON configuration file containing arguments for invoking this script." | ||
| 260 | ) | ||
| 261 | |||
| 262 | args = parser.parse_args() | ||
| 263 | if args.config is not None: | ||
| 264 | with open(args.config, 'rt') as f: | ||
| 265 | args = parser.parse_args( | ||
| 266 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
| 267 | |||
| 268 | env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | ||
| 269 | if env_local_rank != -1 and env_local_rank != args.local_rank: | ||
| 270 | args.local_rank = env_local_rank | ||
| 271 | |||
| 272 | if args.train_data_dir is None: | ||
| 273 | raise ValueError("You must specify --train_data_dir") | ||
| 274 | |||
| 275 | if args.pretrained_model_name_or_path is None: | ||
| 276 | raise ValueError("You must specify --pretrained_model_name_or_path") | ||
| 277 | |||
| 278 | if args.instance_prompt is None: | ||
| 279 | raise ValueError("You must specify --instance_prompt") | ||
| 280 | |||
| 281 | if args.identifier is None: | ||
| 282 | raise ValueError("You must specify --identifier") | ||
| 283 | |||
| 284 | if args.output_dir is None: | ||
| 285 | raise ValueError("You must specify --output_dir") | ||
| 286 | |||
| 287 | if args.with_prior_preservation: | ||
| 288 | if args.class_data_dir is None: | ||
| 289 | raise ValueError("You must specify --class_data_dir") | ||
| 290 | if args.class_prompt is None: | ||
| 291 | raise ValueError("You must specify --class_prompt") | ||
| 292 | |||
| 293 | return args | ||
| 294 | |||
| 295 | |||
| 296 | def freeze_params(params): | ||
| 297 | for param in params: | ||
| 298 | param.requires_grad = False | ||
| 299 | |||
| 300 | |||
| 301 | def make_grid(images, rows, cols): | ||
| 302 | w, h = images[0].size | ||
| 303 | grid = Image.new('RGB', size=(cols*w, rows*h)) | ||
| 304 | for i, image in enumerate(images): | ||
| 305 | grid.paste(image, box=(i % cols*w, i//cols*h)) | ||
| 306 | return grid | ||
| 307 | |||
| 308 | |||
| 309 | class Checkpointer: | ||
| 310 | def __init__( | ||
| 311 | self, | ||
| 312 | datamodule, | ||
| 313 | accelerator, | ||
| 314 | vae, | ||
| 315 | unet, | ||
| 316 | tokenizer, | ||
| 317 | text_encoder, | ||
| 318 | output_dir, | ||
| 319 | sample_image_size, | ||
| 320 | random_sample_batches, | ||
| 321 | sample_batch_size, | ||
| 322 | stable_sample_batches, | ||
| 323 | seed | ||
| 324 | ): | ||
| 325 | self.datamodule = datamodule | ||
| 326 | self.accelerator = accelerator | ||
| 327 | self.vae = vae | ||
| 328 | self.unet = unet | ||
| 329 | self.tokenizer = tokenizer | ||
| 330 | self.text_encoder = text_encoder | ||
| 331 | self.output_dir = output_dir | ||
| 332 | self.sample_image_size = sample_image_size | ||
| 333 | self.seed = seed | ||
| 334 | self.random_sample_batches = random_sample_batches | ||
| 335 | self.sample_batch_size = sample_batch_size | ||
| 336 | self.stable_sample_batches = stable_sample_batches | ||
| 337 | |||
| 338 | @torch.no_grad() | ||
| 339 | def checkpoint(self): | ||
| 340 | print("Saving model...") | ||
| 341 | |||
| 342 | unwrapped = self.accelerator.unwrap_model(self.unet) | ||
| 343 | pipeline = StableDiffusionPipeline( | ||
| 344 | text_encoder=self.text_encoder, | ||
| 345 | vae=self.vae, | ||
| 346 | unet=self.accelerator.unwrap_model(self.unet), | ||
| 347 | tokenizer=self.tokenizer, | ||
| 348 | scheduler=PNDMScheduler( | ||
| 349 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True | ||
| 350 | ), | ||
| 351 | safety_checker=NoCheck(), | ||
| 352 | feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"), | ||
| 353 | ) | ||
| 354 | pipeline.enable_attention_slicing() | ||
| 355 | pipeline.save_pretrained(f"{self.output_dir}/model.ckpt") | ||
| 356 | |||
| 357 | del unwrapped | ||
| 358 | del pipeline | ||
| 359 | |||
| 360 | if torch.cuda.is_available(): | ||
| 361 | torch.cuda.empty_cache() | ||
| 362 | |||
| 363 | @torch.no_grad() | ||
| 364 | def save_samples(self, mode, step, height, width, guidance_scale, eta, num_inference_steps): | ||
| 365 | samples_path = f"{self.output_dir}/samples/{mode}" | ||
| 366 | os.makedirs(samples_path, exist_ok=True) | ||
| 367 | checker = NoCheck() | ||
| 368 | |||
| 369 | unwrapped = self.accelerator.unwrap_model(self.unet) | ||
| 370 | pipeline = StableDiffusionPipeline( | ||
| 371 | text_encoder=self.text_encoder, | ||
| 372 | vae=self.vae, | ||
| 373 | unet=unwrapped, | ||
| 374 | tokenizer=self.tokenizer, | ||
| 375 | scheduler=LMSDiscreteScheduler( | ||
| 376 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
| 377 | ), | ||
| 378 | safety_checker=NoCheck(), | ||
| 379 | feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"), | ||
| 380 | ).to(self.accelerator.device) | ||
| 381 | pipeline.enable_attention_slicing() | ||
| 382 | |||
| 383 | data = { | ||
| 384 | "training": self.datamodule.train_dataloader(), | ||
| 385 | "validation": self.datamodule.val_dataloader(), | ||
| 386 | }[mode] | ||
| 387 | |||
| 388 | if mode == "validation" and self.stable_sample_batches > 0 and step > 0: | ||
| 389 | stable_latents = torch.randn( | ||
| 390 | (self.sample_batch_size, pipeline.unet.in_channels, height // 8, width // 8), | ||
| 391 | device=pipeline.device, | ||
| 392 | generator=torch.Generator(device=pipeline.device).manual_seed(self.seed), | ||
| 393 | ) | ||
| 394 | |||
| 395 | all_samples = [] | ||
| 396 | filename = f"stable_step_%d.png" % (step) | ||
| 397 | |||
| 398 | data_enum = enumerate(data) | ||
| 399 | |||
| 400 | # Generate and save stable samples | ||
| 401 | for i in range(0, self.stable_sample_batches): | ||
| 402 | prompt = [prompt for i, batch in data_enum for j, prompt in enumerate( | ||
| 403 | batch["prompts"]) if i * data.batch_size + j < self.sample_batch_size] | ||
| 404 | |||
| 405 | with self.accelerator.autocast(): | ||
| 406 | samples = pipeline( | ||
| 407 | prompt=prompt, | ||
| 408 | height=self.sample_image_size, | ||
| 409 | latents=stable_latents[:len(prompt)], | ||
| 410 | width=self.sample_image_size, | ||
| 411 | guidance_scale=guidance_scale, | ||
| 412 | eta=eta, | ||
| 413 | num_inference_steps=num_inference_steps, | ||
| 414 | output_type='pil' | ||
| 415 | )["sample"] | ||
| 416 | |||
| 417 | all_samples += samples | ||
| 418 | del samples | ||
| 419 | |||
| 420 | image_grid = make_grid(all_samples, self.stable_sample_batches, self.sample_batch_size) | ||
| 421 | image_grid.save(f"{samples_path}/{filename}") | ||
| 422 | |||
| 423 | del all_samples | ||
| 424 | del image_grid | ||
| 425 | del stable_latents | ||
| 426 | |||
| 427 | all_samples = [] | ||
| 428 | filename = f"step_%d.png" % (step) | ||
| 429 | |||
| 430 | data_enum = enumerate(data) | ||
| 431 | |||
| 432 | # Generate and save random samples | ||
| 433 | for i in range(0, self.random_sample_batches): | ||
| 434 | prompt = [prompt for i, batch in data_enum for j, prompt in enumerate( | ||
| 435 | batch["prompts"]) if i * data.batch_size + j < self.sample_batch_size] | ||
| 436 | |||
| 437 | with self.accelerator.autocast(): | ||
| 438 | samples = pipeline( | ||
| 439 | prompt=prompt, | ||
| 440 | height=self.sample_image_size, | ||
| 441 | width=self.sample_image_size, | ||
| 442 | guidance_scale=guidance_scale, | ||
| 443 | eta=eta, | ||
| 444 | num_inference_steps=num_inference_steps, | ||
| 445 | output_type='pil' | ||
| 446 | )["sample"] | ||
| 447 | |||
| 448 | all_samples += samples | ||
| 449 | del samples | ||
| 450 | |||
| 451 | image_grid = make_grid(all_samples, self.random_sample_batches, self.sample_batch_size) | ||
| 452 | image_grid.save(f"{samples_path}/{filename}") | ||
| 453 | |||
| 454 | del all_samples | ||
| 455 | del image_grid | ||
| 456 | |||
| 457 | del checker | ||
| 458 | del unwrapped | ||
| 459 | del pipeline | ||
| 460 | |||
| 461 | if torch.cuda.is_available(): | ||
| 462 | torch.cuda.empty_cache() | ||
| 463 | |||
| 464 | |||
| 465 | def main(): | ||
| 466 | args = parse_args() | ||
| 467 | |||
| 468 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 469 | basepath = f"{args.output_dir}/{slugify(args.identifier)}/{now}" | ||
| 470 | os.makedirs(basepath, exist_ok=True) | ||
| 471 | |||
| 472 | accelerator = Accelerator( | ||
| 473 | log_with=LoggerType.TENSORBOARD, | ||
| 474 | logging_dir=f"{basepath}", | ||
| 475 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 476 | mixed_precision=args.mixed_precision | ||
| 477 | ) | ||
| 478 | |||
| 479 | # If passed along, set the training seed now. | ||
| 480 | if args.seed is not None: | ||
| 481 | set_seed(args.seed) | ||
| 482 | |||
| 483 | if args.with_prior_preservation: | ||
| 484 | class_images_dir = Path(args.class_data_dir) | ||
| 485 | if not class_images_dir.exists(): | ||
| 486 | class_images_dir.mkdir(parents=True) | ||
| 487 | cur_class_images = len(list(class_images_dir.iterdir())) | ||
| 488 | |||
| 489 | if cur_class_images < args.num_class_images: | ||
| 490 | torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 | ||
| 491 | pipeline = StableDiffusionPipeline.from_pretrained( | ||
| 492 | args.pretrained_model_name_or_path, torch_dtype=torch_dtype) | ||
| 493 | pipeline.set_progress_bar_config(disable=True) | ||
| 494 | |||
| 495 | num_new_images = args.num_class_images - cur_class_images | ||
| 496 | logger.info(f"Number of class images to sample: {num_new_images}.") | ||
| 497 | |||
| 498 | sample_dataset = PromptDataset(args.class_prompt, num_new_images) | ||
| 499 | sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) | ||
| 500 | |||
| 501 | sample_dataloader = accelerator.prepare(sample_dataloader) | ||
| 502 | pipeline.to(accelerator.device) | ||
| 503 | |||
| 504 | for example in tqdm( | ||
| 505 | sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process | ||
| 506 | ): | ||
| 507 | with accelerator.autocast(): | ||
| 508 | images = pipeline(example["prompt"]).images | ||
| 509 | |||
| 510 | for i, image in enumerate(images): | ||
| 511 | image.save(class_images_dir / f"{example['index'][i] + cur_class_images}.jpg") | ||
| 512 | |||
| 513 | del pipeline | ||
| 514 | |||
| 515 | if torch.cuda.is_available(): | ||
| 516 | torch.cuda.empty_cache() | ||
| 517 | |||
| 518 | # Load the tokenizer and add the placeholder token as a additional special token | ||
| 519 | if args.tokenizer_name: | ||
| 520 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
| 521 | elif args.pretrained_model_name_or_path: | ||
| 522 | tokenizer = CLIPTokenizer.from_pretrained( | ||
| 523 | args.pretrained_model_name_or_path + '/tokenizer' | ||
| 524 | ) | ||
| 525 | |||
| 526 | # Load models and create wrapper for stable diffusion | ||
| 527 | text_encoder = CLIPTextModel.from_pretrained( | ||
| 528 | args.pretrained_model_name_or_path + '/text_encoder', | ||
| 529 | ) | ||
| 530 | vae = AutoencoderKL.from_pretrained( | ||
| 531 | args.pretrained_model_name_or_path + '/vae', | ||
| 532 | ) | ||
| 533 | unet = UNet2DConditionModel.from_pretrained( | ||
| 534 | args.pretrained_model_name_or_path + '/unet', | ||
| 535 | ) | ||
| 536 | |||
| 537 | if args.gradient_checkpointing: | ||
| 538 | unet.enable_gradient_checkpointing() | ||
| 539 | |||
| 540 | # slice_size = unet.config.attention_head_dim // 2 | ||
| 541 | # unet.set_attention_slice(slice_size) | ||
| 542 | |||
| 543 | # Freeze vae and unet | ||
| 544 | # freeze_params(vae.parameters()) | ||
| 545 | # freeze_params(text_encoder.parameters()) | ||
| 546 | |||
| 547 | if args.scale_lr: | ||
| 548 | args.learning_rate = ( | ||
| 549 | args.learning_rate * args.gradient_accumulation_steps * | ||
| 550 | args.train_batch_size * accelerator.num_processes | ||
| 551 | ) | ||
| 552 | |||
| 553 | # Initialize the optimizer | ||
| 554 | optimizer = torch.optim.AdamW( | ||
| 555 | unet.parameters(), # only optimize unet | ||
| 556 | lr=args.learning_rate, | ||
| 557 | betas=(args.adam_beta1, args.adam_beta2), | ||
| 558 | weight_decay=args.adam_weight_decay, | ||
| 559 | eps=args.adam_epsilon, | ||
| 560 | ) | ||
| 561 | |||
| 562 | # TODO (patil-suraj): laod scheduler using args | ||
| 563 | noise_scheduler = DDPMScheduler( | ||
| 564 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, tensor_format="pt" | ||
| 565 | ) | ||
| 566 | |||
| 567 | def collate_fn(examples): | ||
| 568 | prompts = [example["prompts"] for example in examples] | ||
| 569 | input_ids = [example["instance_prompt_ids"] for example in examples] | ||
| 570 | pixel_values = [example["instance_images"] for example in examples] | ||
| 571 | |||
| 572 | # concat class and instance examples for prior preservation | ||
| 573 | if args.with_prior_preservation: | ||
| 574 | input_ids += [example["class_prompt_ids"] for example in examples] | ||
| 575 | pixel_values += [example["class_images"] for example in examples] | ||
| 576 | |||
| 577 | pixel_values = torch.stack(pixel_values) | ||
| 578 | pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | ||
| 579 | |||
| 580 | input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids | ||
| 581 | |||
| 582 | batch = { | ||
| 583 | "prompts": prompts, | ||
| 584 | "input_ids": input_ids, | ||
| 585 | "pixel_values": pixel_values, | ||
| 586 | } | ||
| 587 | return batch | ||
| 588 | |||
| 589 | datamodule = CSVDataModule( | ||
| 590 | data_root=args.train_data_dir, | ||
| 591 | batch_size=args.train_batch_size, | ||
| 592 | tokenizer=tokenizer, | ||
| 593 | instance_prompt=args.instance_prompt, | ||
| 594 | class_data_root=args.class_data_dir if args.with_prior_preservation else None, | ||
| 595 | class_prompt=args.class_prompt, | ||
| 596 | size=args.resolution, | ||
| 597 | identifier=args.identifier, | ||
| 598 | repeats=args.repeats, | ||
| 599 | center_crop=args.center_crop, | ||
| 600 | collate_fn=collate_fn) | ||
| 601 | |||
| 602 | datamodule.prepare_data() | ||
| 603 | datamodule.setup() | ||
| 604 | |||
| 605 | train_dataloader = datamodule.train_dataloader() | ||
| 606 | val_dataloader = datamodule.val_dataloader() | ||
| 607 | |||
| 608 | checkpointer = Checkpointer( | ||
| 609 | datamodule=datamodule, | ||
| 610 | accelerator=accelerator, | ||
| 611 | vae=vae, | ||
| 612 | unet=unet, | ||
| 613 | tokenizer=tokenizer, | ||
| 614 | text_encoder=text_encoder, | ||
| 615 | output_dir=basepath, | ||
| 616 | sample_image_size=args.sample_image_size, | ||
| 617 | sample_batch_size=args.sample_batch_size, | ||
| 618 | random_sample_batches=args.random_sample_batches, | ||
| 619 | stable_sample_batches=args.stable_sample_batches, | ||
| 620 | seed=args.seed | ||
| 621 | ) | ||
| 622 | |||
| 623 | # Scheduler and math around the number of training steps. | ||
| 624 | overrode_max_train_steps = False | ||
| 625 | num_update_steps_per_epoch = math.ceil( | ||
| 626 | (len(train_dataloader) + len(val_dataloader)) / args.gradient_accumulation_steps) | ||
| 627 | if args.max_train_steps is None: | ||
| 628 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 629 | overrode_max_train_steps = True | ||
| 630 | |||
| 631 | lr_scheduler = get_scheduler( | ||
| 632 | args.lr_scheduler, | ||
| 633 | optimizer=optimizer, | ||
| 634 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | ||
| 635 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
| 636 | ) | ||
| 637 | |||
| 638 | unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 639 | unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
| 640 | ) | ||
| 641 | |||
| 642 | # Move vae and unet to device | ||
| 643 | text_encoder.to(accelerator.device) | ||
| 644 | vae.to(accelerator.device) | ||
| 645 | |||
| 646 | # Keep text_encoder and vae in eval mode as we don't train these | ||
| 647 | # text_encoder.eval() | ||
| 648 | # vae.eval() | ||
| 649 | |||
| 650 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
| 651 | num_update_steps_per_epoch = math.ceil( | ||
| 652 | (len(train_dataloader) + len(val_dataloader)) / args.gradient_accumulation_steps) | ||
| 653 | if overrode_max_train_steps: | ||
| 654 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 655 | # Afterwards we recalculate our number of training epochs | ||
| 656 | args.num_train_epochs = math.ceil( | ||
| 657 | args.max_train_steps / num_update_steps_per_epoch) | ||
| 658 | |||
| 659 | # We need to initialize the trackers we use, and also store our configuration. | ||
| 660 | # The trackers initializes automatically on the main process. | ||
| 661 | if accelerator.is_main_process: | ||
| 662 | accelerator.init_trackers("dreambooth", config=vars(args)) | ||
| 663 | |||
| 664 | # Train! | ||
| 665 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
| 666 | |||
| 667 | logger.info("***** Running training *****") | ||
| 668 | logger.info(f" Num Epochs = {args.num_train_epochs}") | ||
| 669 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
| 670 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
| 671 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
| 672 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
| 673 | # Only show the progress bar once on each machine. | ||
| 674 | |||
| 675 | global_step = 0 | ||
| 676 | min_val_loss = np.inf | ||
| 677 | |||
| 678 | checkpointer.save_samples( | ||
| 679 | "validation", | ||
| 680 | 0, | ||
| 681 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
| 682 | |||
| 683 | progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) | ||
| 684 | progress_bar.set_description("Global steps") | ||
| 685 | |||
| 686 | local_progress_bar = tqdm(range(num_update_steps_per_epoch), disable=not accelerator.is_local_main_process) | ||
| 687 | local_progress_bar.set_description("Steps") | ||
| 688 | |||
| 689 | try: | ||
| 690 | for epoch in range(args.num_train_epochs): | ||
| 691 | local_progress_bar.reset() | ||
| 692 | |||
| 693 | unet.train() | ||
| 694 | train_loss = 0.0 | ||
| 695 | |||
| 696 | for step, batch in enumerate(train_dataloader): | ||
| 697 | with accelerator.accumulate(unet): | ||
| 698 | with accelerator.autocast(): | ||
| 699 | # Convert images to latent space | ||
| 700 | with torch.no_grad(): | ||
| 701 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
| 702 | latents = latents * 0.18215 | ||
| 703 | |||
| 704 | # Sample noise that we'll add to the latents | ||
| 705 | noise = torch.randn(latents.shape).to(latents.device) | ||
| 706 | bsz = latents.shape[0] | ||
| 707 | # Sample a random timestep for each image | ||
| 708 | timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, | ||
| 709 | (bsz,), device=latents.device).long() | ||
| 710 | |||
| 711 | # Add noise to the latents according to the noise magnitude at each timestep | ||
| 712 | # (this is the forward diffusion process) | ||
| 713 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 714 | |||
| 715 | # Get the text embedding for conditioning | ||
| 716 | with torch.no_grad(): | ||
| 717 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
| 718 | |||
| 719 | # Predict the noise residual | ||
| 720 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 721 | |||
| 722 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
| 723 | |||
| 724 | accelerator.backward(loss) | ||
| 725 | |||
| 726 | optimizer.step() | ||
| 727 | if not accelerator.optimizer_step_was_skipped: | ||
| 728 | lr_scheduler.step() | ||
| 729 | optimizer.zero_grad(set_to_none=True) | ||
| 730 | |||
| 731 | loss = loss.detach().item() | ||
| 732 | train_loss += loss | ||
| 733 | |||
| 734 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
| 735 | if accelerator.sync_gradients: | ||
| 736 | progress_bar.update(1) | ||
| 737 | local_progress_bar.update(1) | ||
| 738 | |||
| 739 | global_step += 1 | ||
| 740 | |||
| 741 | if global_step % args.checkpoint_frequency == 0 and global_step > 0 and accelerator.is_main_process: | ||
| 742 | progress_bar.clear() | ||
| 743 | local_progress_bar.clear() | ||
| 744 | |||
| 745 | checkpointer.save_samples( | ||
| 746 | "training", | ||
| 747 | global_step, | ||
| 748 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
| 749 | |||
| 750 | logs = {"mode": "training", "loss": loss, "lr": lr_scheduler.get_last_lr()[0]} | ||
| 751 | local_progress_bar.set_postfix(**logs) | ||
| 752 | |||
| 753 | if global_step >= args.max_train_steps: | ||
| 754 | break | ||
| 755 | |||
| 756 | train_loss /= len(train_dataloader) | ||
| 757 | |||
| 758 | unet.eval() | ||
| 759 | val_loss = 0.0 | ||
| 760 | |||
| 761 | for step, batch in enumerate(val_dataloader): | ||
| 762 | with torch.no_grad(), accelerator.autocast(): | ||
| 763 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | ||
| 764 | latents = latents * 0.18215 | ||
| 765 | |||
| 766 | noise = torch.randn(latents.shape).to(latents.device) | ||
| 767 | bsz = latents.shape[0] | ||
| 768 | timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, | ||
| 769 | (bsz,), device=latents.device).long() | ||
| 770 | |||
| 771 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 772 | |||
| 773 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
| 774 | |||
| 775 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 776 | |||
| 777 | noise_pred, noise = accelerator.gather_for_metrics((noise_pred, noise)) | ||
| 778 | |||
| 779 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
| 780 | |||
| 781 | loss = loss.detach().item() | ||
| 782 | val_loss += loss | ||
| 783 | |||
| 784 | if accelerator.sync_gradients: | ||
| 785 | progress_bar.update(1) | ||
| 786 | local_progress_bar.update(1) | ||
| 787 | |||
| 788 | logs = {"mode": "validation", "loss": loss} | ||
| 789 | local_progress_bar.set_postfix(**logs) | ||
| 790 | |||
| 791 | val_loss /= len(val_dataloader) | ||
| 792 | |||
| 793 | accelerator.log({"train/loss": train_loss, "val/loss": val_loss}, step=global_step) | ||
| 794 | |||
| 795 | progress_bar.clear() | ||
| 796 | local_progress_bar.clear() | ||
| 797 | |||
| 798 | if min_val_loss > val_loss: | ||
| 799 | accelerator.print(f"Validation loss reached new minimum: {min_val_loss:.2e} -> {val_loss:.2e}") | ||
| 800 | min_val_loss = val_loss | ||
| 801 | |||
| 802 | checkpointer.save_samples( | ||
| 803 | "validation", | ||
| 804 | global_step, | ||
| 805 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
| 806 | |||
| 807 | accelerator.wait_for_everyone() | ||
| 808 | |||
| 809 | # Create the pipeline using using the trained modules and save it. | ||
| 810 | if accelerator.is_main_process: | ||
| 811 | print("Finished! Saving final checkpoint and resume state.") | ||
| 812 | checkpointer.checkpoint() | ||
| 813 | |||
| 814 | accelerator.end_training() | ||
| 815 | |||
| 816 | except KeyboardInterrupt: | ||
| 817 | if accelerator.is_main_process: | ||
| 818 | print("Interrupted, saving checkpoint and resume state...") | ||
| 819 | checkpointer.checkpoint() | ||
| 820 | accelerator.end_training() | ||
| 821 | quit() | ||
| 822 | |||
| 823 | |||
| 824 | if __name__ == "__main__": | ||
| 825 | main() | ||
