diff options
| -rw-r--r-- | infer.py | 15 | ||||
| -rw-r--r-- | pipelines/stable_diffusion/vlpn_stable_diffusion.py | 1 | ||||
| -rw-r--r-- | train.py | 672 | ||||
| -rw-r--r-- | train_dreambooth.py | 3 | ||||
| -rw-r--r-- | train_ti.py | 74 | ||||
| -rw-r--r-- | trainer/base.py | 544 | ||||
| -rw-r--r-- | trainer/dreambooth.py | 0 | ||||
| -rw-r--r-- | trainer/ti.py | 164 | ||||
| -rw-r--r-- | training/functional.py (renamed from training/common.py) | 29 | ||||
| -rw-r--r-- | training/lora.py | 107 | ||||
| -rw-r--r-- | training/util.py | 204 |
11 files changed, 1534 insertions, 279 deletions
| @@ -214,10 +214,21 @@ def load_embeddings(pipeline, embeddings_dir): | |||
| 214 | def create_pipeline(model, dtype): | 214 | def create_pipeline(model, dtype): |
| 215 | print("Loading Stable Diffusion pipeline...") | 215 | print("Loading Stable Diffusion pipeline...") |
| 216 | 216 | ||
| 217 | pipeline = VlpnStableDiffusion.from_pretrained(model, torch_dtype=dtype) | 217 | tokenizer = MultiCLIPTokenizer.from_pretrained(model, subfolder='tokenizer', torch_dtype=dtype) |
| 218 | text_encoder = CLIPTextModel.from_pretrained(model, subfolder='text_encoder', torch_dtype=dtype) | ||
| 219 | vae = AutoencoderKL.from_pretrained(model, subfolder='vae', torch_dtype=dtype) | ||
| 220 | unet = UNet2DConditionModel.from_pretrained(model, subfolder='unet', torch_dtype=dtype) | ||
| 221 | scheduler = DDIMScheduler.from_pretrained(model, subfolder='scheduler', torch_dtype=dtype) | ||
| 218 | 222 | ||
| 219 | patch_managed_embeddings(pipeline.text_encoder) | 223 | patch_managed_embeddings(text_encoder) |
| 220 | 224 | ||
| 225 | pipeline = VlpnStableDiffusion( | ||
| 226 | text_encoder=text_encoder, | ||
| 227 | vae=vae, | ||
| 228 | unet=unet, | ||
| 229 | tokenizer=tokenizer, | ||
| 230 | scheduler=scheduler, | ||
| 231 | ) | ||
| 221 | pipeline.enable_xformers_memory_efficient_attention() | 232 | pipeline.enable_xformers_memory_efficient_attention() |
| 222 | pipeline.enable_vae_slicing() | 233 | pipeline.enable_vae_slicing() |
| 223 | pipeline.to("cuda") | 234 | pipeline.to("cuda") |
diff --git a/pipelines/stable_diffusion/vlpn_stable_diffusion.py b/pipelines/stable_diffusion/vlpn_stable_diffusion.py index a5cfc60..43141bd 100644 --- a/pipelines/stable_diffusion/vlpn_stable_diffusion.py +++ b/pipelines/stable_diffusion/vlpn_stable_diffusion.py | |||
| @@ -52,7 +52,6 @@ class VlpnStableDiffusion(DiffusionPipeline): | |||
| 52 | EulerAncestralDiscreteScheduler, | 52 | EulerAncestralDiscreteScheduler, |
| 53 | DPMSolverMultistepScheduler, | 53 | DPMSolverMultistepScheduler, |
| 54 | ], | 54 | ], |
| 55 | **kwargs, | ||
| 56 | ): | 55 | ): |
| 57 | super().__init__() | 56 | super().__init__() |
| 58 | 57 | ||
diff --git a/train.py b/train.py new file mode 100644 index 0000000..d8644c4 --- /dev/null +++ b/train.py | |||
| @@ -0,0 +1,672 @@ | |||
| 1 | import argparse | ||
| 2 | import datetime | ||
| 3 | import logging | ||
| 4 | from pathlib import Path | ||
| 5 | |||
| 6 | import torch | ||
| 7 | import torch.utils.checkpoint | ||
| 8 | |||
| 9 | from accelerate import Accelerator | ||
| 10 | from accelerate.logging import get_logger | ||
| 11 | from accelerate.utils import LoggerType, set_seed | ||
| 12 | from slugify import slugify | ||
| 13 | |||
| 14 | from data.csv import VlpnDataModule, VlpnDataItem | ||
| 15 | from util import load_config, load_embeddings_from_dir | ||
| 16 | |||
| 17 | from trainer.ti import TextualInversionTrainingStrategy | ||
| 18 | from trainer.base import Trainer | ||
| 19 | from training.optimization import get_scheduler | ||
| 20 | from training.util import save_args, generate_class_images, add_placeholder_tokens, get_models | ||
| 21 | |||
| 22 | logger = get_logger(__name__) | ||
| 23 | |||
| 24 | |||
| 25 | torch.backends.cuda.matmul.allow_tf32 = True | ||
| 26 | torch.backends.cudnn.benchmark = True | ||
| 27 | |||
| 28 | |||
| 29 | def parse_args(): | ||
| 30 | parser = argparse.ArgumentParser( | ||
| 31 | description="Simple example of a training script." | ||
| 32 | ) | ||
| 33 | parser.add_argument( | ||
| 34 | "--pretrained_model_name_or_path", | ||
| 35 | type=str, | ||
| 36 | default=None, | ||
| 37 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
| 38 | ) | ||
| 39 | parser.add_argument( | ||
| 40 | "--tokenizer_name", | ||
| 41 | type=str, | ||
| 42 | default=None, | ||
| 43 | help="Pretrained tokenizer name or path if not the same as model_name", | ||
| 44 | ) | ||
| 45 | parser.add_argument( | ||
| 46 | "--train_data_file", | ||
| 47 | type=str, | ||
| 48 | default=None, | ||
| 49 | help="A CSV file containing the training data." | ||
| 50 | ) | ||
| 51 | parser.add_argument( | ||
| 52 | "--train_data_template", | ||
| 53 | type=str, | ||
| 54 | default="template", | ||
| 55 | ) | ||
| 56 | parser.add_argument( | ||
| 57 | "--project", | ||
| 58 | type=str, | ||
| 59 | default=None, | ||
| 60 | help="The name of the current project.", | ||
| 61 | ) | ||
| 62 | parser.add_argument( | ||
| 63 | "--placeholder_tokens", | ||
| 64 | type=str, | ||
| 65 | nargs='*', | ||
| 66 | help="A token to use as a placeholder for the concept.", | ||
| 67 | ) | ||
| 68 | parser.add_argument( | ||
| 69 | "--initializer_tokens", | ||
| 70 | type=str, | ||
| 71 | nargs='*', | ||
| 72 | help="A token to use as initializer word." | ||
| 73 | ) | ||
| 74 | parser.add_argument( | ||
| 75 | "--num_vectors", | ||
| 76 | type=int, | ||
| 77 | nargs='*', | ||
| 78 | help="Number of vectors per embedding." | ||
| 79 | ) | ||
| 80 | parser.add_argument( | ||
| 81 | "--num_class_images", | ||
| 82 | type=int, | ||
| 83 | default=1, | ||
| 84 | help="How many class images to generate." | ||
| 85 | ) | ||
| 86 | parser.add_argument( | ||
| 87 | "--class_image_dir", | ||
| 88 | type=str, | ||
| 89 | default="cls", | ||
| 90 | help="The directory where class images will be saved.", | ||
| 91 | ) | ||
| 92 | parser.add_argument( | ||
| 93 | "--exclude_collections", | ||
| 94 | type=str, | ||
| 95 | nargs='*', | ||
| 96 | help="Exclude all items with a listed collection.", | ||
| 97 | ) | ||
| 98 | parser.add_argument( | ||
| 99 | "--output_dir", | ||
| 100 | type=str, | ||
| 101 | default="output/text-inversion", | ||
| 102 | help="The output directory where the model predictions and checkpoints will be written.", | ||
| 103 | ) | ||
| 104 | parser.add_argument( | ||
| 105 | "--embeddings_dir", | ||
| 106 | type=str, | ||
| 107 | default=None, | ||
| 108 | help="The embeddings directory where Textual Inversion embeddings are stored.", | ||
| 109 | ) | ||
| 110 | parser.add_argument( | ||
| 111 | "--collection", | ||
| 112 | type=str, | ||
| 113 | nargs='*', | ||
| 114 | help="A collection to filter the dataset.", | ||
| 115 | ) | ||
| 116 | parser.add_argument( | ||
| 117 | "--seed", | ||
| 118 | type=int, | ||
| 119 | default=None, | ||
| 120 | help="A seed for reproducible training." | ||
| 121 | ) | ||
| 122 | parser.add_argument( | ||
| 123 | "--resolution", | ||
| 124 | type=int, | ||
| 125 | default=768, | ||
| 126 | help=( | ||
| 127 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
| 128 | " resolution" | ||
| 129 | ), | ||
| 130 | ) | ||
| 131 | parser.add_argument( | ||
| 132 | "--num_buckets", | ||
| 133 | type=int, | ||
| 134 | default=0, | ||
| 135 | help="Number of aspect ratio buckets in either direction.", | ||
| 136 | ) | ||
| 137 | parser.add_argument( | ||
| 138 | "--progressive_buckets", | ||
| 139 | action="store_true", | ||
| 140 | help="Include images in smaller buckets as well.", | ||
| 141 | ) | ||
| 142 | parser.add_argument( | ||
| 143 | "--bucket_step_size", | ||
| 144 | type=int, | ||
| 145 | default=64, | ||
| 146 | help="Step size between buckets.", | ||
| 147 | ) | ||
| 148 | parser.add_argument( | ||
| 149 | "--bucket_max_pixels", | ||
| 150 | type=int, | ||
| 151 | default=None, | ||
| 152 | help="Maximum pixels per bucket.", | ||
| 153 | ) | ||
| 154 | parser.add_argument( | ||
| 155 | "--tag_dropout", | ||
| 156 | type=float, | ||
| 157 | default=0, | ||
| 158 | help="Tag dropout probability.", | ||
| 159 | ) | ||
| 160 | parser.add_argument( | ||
| 161 | "--no_tag_shuffle", | ||
| 162 | action="store_true", | ||
| 163 | help="Shuffle tags.", | ||
| 164 | ) | ||
| 165 | parser.add_argument( | ||
| 166 | "--vector_dropout", | ||
| 167 | type=int, | ||
| 168 | default=0, | ||
| 169 | help="Vector dropout probability.", | ||
| 170 | ) | ||
| 171 | parser.add_argument( | ||
| 172 | "--vector_shuffle", | ||
| 173 | type=str, | ||
| 174 | default="auto", | ||
| 175 | help='Vector shuffling algorithm. Choose between ["all", "trailing", "leading", "between", "auto", "off"]', | ||
| 176 | ) | ||
| 177 | parser.add_argument( | ||
| 178 | "--num_train_epochs", | ||
| 179 | type=int, | ||
| 180 | default=100 | ||
| 181 | ) | ||
| 182 | parser.add_argument( | ||
| 183 | "--gradient_accumulation_steps", | ||
| 184 | type=int, | ||
| 185 | default=1, | ||
| 186 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
| 187 | ) | ||
| 188 | parser.add_argument( | ||
| 189 | "--gradient_checkpointing", | ||
| 190 | action="store_true", | ||
| 191 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | ||
| 192 | ) | ||
| 193 | parser.add_argument( | ||
| 194 | "--find_lr", | ||
| 195 | action="store_true", | ||
| 196 | help="Automatically find a learning rate (no training).", | ||
| 197 | ) | ||
| 198 | parser.add_argument( | ||
| 199 | "--learning_rate", | ||
| 200 | type=float, | ||
| 201 | default=1e-4, | ||
| 202 | help="Initial learning rate (after the potential warmup period) to use.", | ||
| 203 | ) | ||
| 204 | parser.add_argument( | ||
| 205 | "--scale_lr", | ||
| 206 | action="store_true", | ||
| 207 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | ||
| 208 | ) | ||
| 209 | parser.add_argument( | ||
| 210 | "--lr_scheduler", | ||
| 211 | type=str, | ||
| 212 | default="one_cycle", | ||
| 213 | help=( | ||
| 214 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | ||
| 215 | ' "constant", "constant_with_warmup", "one_cycle"]' | ||
| 216 | ), | ||
| 217 | ) | ||
| 218 | parser.add_argument( | ||
| 219 | "--lr_warmup_epochs", | ||
| 220 | type=int, | ||
| 221 | default=10, | ||
| 222 | help="Number of steps for the warmup in the lr scheduler." | ||
| 223 | ) | ||
| 224 | parser.add_argument( | ||
| 225 | "--lr_cycles", | ||
| 226 | type=int, | ||
| 227 | default=None, | ||
| 228 | help="Number of restart cycles in the lr scheduler." | ||
| 229 | ) | ||
| 230 | parser.add_argument( | ||
| 231 | "--lr_warmup_func", | ||
| 232 | type=str, | ||
| 233 | default="cos", | ||
| 234 | help='Choose between ["linear", "cos"]' | ||
| 235 | ) | ||
| 236 | parser.add_argument( | ||
| 237 | "--lr_warmup_exp", | ||
| 238 | type=int, | ||
| 239 | default=1, | ||
| 240 | help='If lr_warmup_func is "cos", exponent to modify the function' | ||
| 241 | ) | ||
| 242 | parser.add_argument( | ||
| 243 | "--lr_annealing_func", | ||
| 244 | type=str, | ||
| 245 | default="cos", | ||
| 246 | help='Choose between ["linear", "half_cos", "cos"]' | ||
| 247 | ) | ||
| 248 | parser.add_argument( | ||
| 249 | "--lr_annealing_exp", | ||
| 250 | type=int, | ||
| 251 | default=1, | ||
| 252 | help='If lr_annealing_func is "half_cos" or "cos", exponent to modify the function' | ||
| 253 | ) | ||
| 254 | parser.add_argument( | ||
| 255 | "--lr_min_lr", | ||
| 256 | type=float, | ||
| 257 | default=0.04, | ||
| 258 | help="Minimum learning rate in the lr scheduler." | ||
| 259 | ) | ||
| 260 | parser.add_argument( | ||
| 261 | "--use_ema", | ||
| 262 | action="store_true", | ||
| 263 | help="Whether to use EMA model." | ||
| 264 | ) | ||
| 265 | parser.add_argument( | ||
| 266 | "--ema_inv_gamma", | ||
| 267 | type=float, | ||
| 268 | default=1.0 | ||
| 269 | ) | ||
| 270 | parser.add_argument( | ||
| 271 | "--ema_power", | ||
| 272 | type=float, | ||
| 273 | default=1 | ||
| 274 | ) | ||
| 275 | parser.add_argument( | ||
| 276 | "--ema_max_decay", | ||
| 277 | type=float, | ||
| 278 | default=0.9999 | ||
| 279 | ) | ||
| 280 | parser.add_argument( | ||
| 281 | "--use_8bit_adam", | ||
| 282 | action="store_true", | ||
| 283 | help="Whether or not to use 8-bit Adam from bitsandbytes." | ||
| 284 | ) | ||
| 285 | parser.add_argument( | ||
| 286 | "--adam_beta1", | ||
| 287 | type=float, | ||
| 288 | default=0.9, | ||
| 289 | help="The beta1 parameter for the Adam optimizer." | ||
| 290 | ) | ||
| 291 | parser.add_argument( | ||
| 292 | "--adam_beta2", | ||
| 293 | type=float, | ||
| 294 | default=0.999, | ||
| 295 | help="The beta2 parameter for the Adam optimizer." | ||
| 296 | ) | ||
| 297 | parser.add_argument( | ||
| 298 | "--adam_weight_decay", | ||
| 299 | type=float, | ||
| 300 | default=0, | ||
| 301 | help="Weight decay to use." | ||
| 302 | ) | ||
| 303 | parser.add_argument( | ||
| 304 | "--adam_epsilon", | ||
| 305 | type=float, | ||
| 306 | default=1e-08, | ||
| 307 | help="Epsilon value for the Adam optimizer" | ||
| 308 | ) | ||
| 309 | parser.add_argument( | ||
| 310 | "--adam_amsgrad", | ||
| 311 | type=bool, | ||
| 312 | default=False, | ||
| 313 | help="Amsgrad value for the Adam optimizer" | ||
| 314 | ) | ||
| 315 | parser.add_argument( | ||
| 316 | "--mixed_precision", | ||
| 317 | type=str, | ||
| 318 | default="no", | ||
| 319 | choices=["no", "fp16", "bf16"], | ||
| 320 | help=( | ||
| 321 | "Whether to use mixed precision. Choose" | ||
| 322 | "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | ||
| 323 | "and an Nvidia Ampere GPU." | ||
| 324 | ), | ||
| 325 | ) | ||
| 326 | parser.add_argument( | ||
| 327 | "--checkpoint_frequency", | ||
| 328 | type=int, | ||
| 329 | default=5, | ||
| 330 | help="How often to save a checkpoint and sample image (in epochs)", | ||
| 331 | ) | ||
| 332 | parser.add_argument( | ||
| 333 | "--sample_frequency", | ||
| 334 | type=int, | ||
| 335 | default=1, | ||
| 336 | help="How often to save a checkpoint and sample image (in epochs)", | ||
| 337 | ) | ||
| 338 | parser.add_argument( | ||
| 339 | "--sample_image_size", | ||
| 340 | type=int, | ||
| 341 | default=768, | ||
| 342 | help="Size of sample images", | ||
| 343 | ) | ||
| 344 | parser.add_argument( | ||
| 345 | "--sample_batches", | ||
| 346 | type=int, | ||
| 347 | default=1, | ||
| 348 | help="Number of sample batches to generate per checkpoint", | ||
| 349 | ) | ||
| 350 | parser.add_argument( | ||
| 351 | "--sample_batch_size", | ||
| 352 | type=int, | ||
| 353 | default=1, | ||
| 354 | help="Number of samples to generate per batch", | ||
| 355 | ) | ||
| 356 | parser.add_argument( | ||
| 357 | "--valid_set_size", | ||
| 358 | type=int, | ||
| 359 | default=None, | ||
| 360 | help="Number of images in the validation dataset." | ||
| 361 | ) | ||
| 362 | parser.add_argument( | ||
| 363 | "--valid_set_repeat", | ||
| 364 | type=int, | ||
| 365 | default=1, | ||
| 366 | help="Times the images in the validation dataset are repeated." | ||
| 367 | ) | ||
| 368 | parser.add_argument( | ||
| 369 | "--train_batch_size", | ||
| 370 | type=int, | ||
| 371 | default=1, | ||
| 372 | help="Batch size (per device) for the training dataloader." | ||
| 373 | ) | ||
| 374 | parser.add_argument( | ||
| 375 | "--sample_steps", | ||
| 376 | type=int, | ||
| 377 | default=20, | ||
| 378 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | ||
| 379 | ) | ||
| 380 | parser.add_argument( | ||
| 381 | "--prior_loss_weight", | ||
| 382 | type=float, | ||
| 383 | default=1.0, | ||
| 384 | help="The weight of prior preservation loss." | ||
| 385 | ) | ||
| 386 | parser.add_argument( | ||
| 387 | "--emb_decay_target", | ||
| 388 | default=0.4, | ||
| 389 | type=float, | ||
| 390 | help="Embedding decay target." | ||
| 391 | ) | ||
| 392 | parser.add_argument( | ||
| 393 | "--emb_decay_factor", | ||
| 394 | default=0, | ||
| 395 | type=float, | ||
| 396 | help="Embedding decay factor." | ||
| 397 | ) | ||
| 398 | parser.add_argument( | ||
| 399 | "--emb_decay_start", | ||
| 400 | default=1e-4, | ||
| 401 | type=float, | ||
| 402 | help="Embedding decay start offset." | ||
| 403 | ) | ||
| 404 | parser.add_argument( | ||
| 405 | "--noise_timesteps", | ||
| 406 | type=int, | ||
| 407 | default=1000, | ||
| 408 | ) | ||
| 409 | parser.add_argument( | ||
| 410 | "--resume_from", | ||
| 411 | type=str, | ||
| 412 | default=None, | ||
| 413 | help="Path to a directory to resume training from (ie, logs/token_name/2022-09-22T23-36-27)" | ||
| 414 | ) | ||
| 415 | parser.add_argument( | ||
| 416 | "--global_step", | ||
| 417 | type=int, | ||
| 418 | default=0, | ||
| 419 | ) | ||
| 420 | parser.add_argument( | ||
| 421 | "--config", | ||
| 422 | type=str, | ||
| 423 | default=None, | ||
| 424 | help="Path to a JSON configuration file containing arguments for invoking this script." | ||
| 425 | ) | ||
| 426 | |||
| 427 | args = parser.parse_args() | ||
| 428 | if args.config is not None: | ||
| 429 | args = load_config(args.config) | ||
| 430 | args = parser.parse_args(namespace=argparse.Namespace(**args)) | ||
| 431 | |||
| 432 | if args.train_data_file is None: | ||
| 433 | raise ValueError("You must specify --train_data_file") | ||
| 434 | |||
| 435 | if args.pretrained_model_name_or_path is None: | ||
| 436 | raise ValueError("You must specify --pretrained_model_name_or_path") | ||
| 437 | |||
| 438 | if args.project is None: | ||
| 439 | raise ValueError("You must specify --project") | ||
| 440 | |||
| 441 | if isinstance(args.placeholder_tokens, str): | ||
| 442 | args.placeholder_tokens = [args.placeholder_tokens] | ||
| 443 | |||
| 444 | if len(args.placeholder_tokens) == 0: | ||
| 445 | args.placeholder_tokens = [f"<*{i}>" for i in range(args.initializer_tokens)] | ||
| 446 | |||
| 447 | if isinstance(args.initializer_tokens, str): | ||
| 448 | args.initializer_tokens = [args.initializer_tokens] * len(args.placeholder_tokens) | ||
| 449 | |||
| 450 | if len(args.initializer_tokens) == 0: | ||
| 451 | raise ValueError("You must specify --initializer_tokens") | ||
| 452 | |||
| 453 | if len(args.placeholder_tokens) != len(args.initializer_tokens): | ||
| 454 | raise ValueError("--placeholder_tokens and --initializer_tokens must have the same number of items") | ||
| 455 | |||
| 456 | if args.num_vectors is None: | ||
| 457 | args.num_vectors = 1 | ||
| 458 | |||
| 459 | if isinstance(args.num_vectors, int): | ||
| 460 | args.num_vectors = [args.num_vectors] * len(args.initializer_tokens) | ||
| 461 | |||
| 462 | if len(args.placeholder_tokens) != len(args.num_vectors): | ||
| 463 | raise ValueError("--placeholder_tokens and --num_vectors must have the same number of items") | ||
| 464 | |||
| 465 | if isinstance(args.collection, str): | ||
| 466 | args.collection = [args.collection] | ||
| 467 | |||
| 468 | if isinstance(args.exclude_collections, str): | ||
| 469 | args.exclude_collections = [args.exclude_collections] | ||
| 470 | |||
| 471 | if args.output_dir is None: | ||
| 472 | raise ValueError("You must specify --output_dir") | ||
| 473 | |||
| 474 | return args | ||
| 475 | |||
| 476 | |||
| 477 | def main(): | ||
| 478 | args = parse_args() | ||
| 479 | |||
| 480 | global_step_offset = args.global_step | ||
| 481 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 482 | output_dir = Path(args.output_dir).joinpath(slugify(args.project), now) | ||
| 483 | output_dir.mkdir(parents=True, exist_ok=True) | ||
| 484 | |||
| 485 | accelerator = Accelerator( | ||
| 486 | log_with=LoggerType.TENSORBOARD, | ||
| 487 | logging_dir=f"{output_dir}", | ||
| 488 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 489 | mixed_precision=args.mixed_precision | ||
| 490 | ) | ||
| 491 | |||
| 492 | logging.basicConfig(filename=output_dir.joinpath("log.txt"), level=logging.DEBUG) | ||
| 493 | |||
| 494 | if args.seed is None: | ||
| 495 | args.seed = torch.random.seed() >> 32 | ||
| 496 | |||
| 497 | set_seed(args.seed) | ||
| 498 | |||
| 499 | save_args(output_dir, args) | ||
| 500 | |||
| 501 | tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings = get_models( | ||
| 502 | args.pretrained_model_name_or_path) | ||
| 503 | |||
| 504 | tokenizer.set_use_vector_shuffle(args.vector_shuffle) | ||
| 505 | tokenizer.set_dropout(args.vector_dropout) | ||
| 506 | |||
| 507 | vae.enable_slicing() | ||
| 508 | vae.set_use_memory_efficient_attention_xformers(True) | ||
| 509 | unet.set_use_memory_efficient_attention_xformers(True) | ||
| 510 | |||
| 511 | if args.gradient_checkpointing: | ||
| 512 | unet.enable_gradient_checkpointing() | ||
| 513 | text_encoder.gradient_checkpointing_enable() | ||
| 514 | |||
| 515 | if args.embeddings_dir is not None: | ||
| 516 | embeddings_dir = Path(args.embeddings_dir) | ||
| 517 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
| 518 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
| 519 | |||
| 520 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | ||
| 521 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | ||
| 522 | |||
| 523 | placeholder_token_ids, initializer_token_ids = add_placeholder_tokens( | ||
| 524 | tokenizer=tokenizer, | ||
| 525 | embeddings=embeddings, | ||
| 526 | placeholder_tokens=args.placeholder_tokens, | ||
| 527 | initializer_tokens=args.initializer_tokens, | ||
| 528 | num_vectors=args.num_vectors | ||
| 529 | ) | ||
| 530 | |||
| 531 | if len(placeholder_token_ids) != 0: | ||
| 532 | initializer_token_id_lens = [len(id) for id in initializer_token_ids] | ||
| 533 | placeholder_token_stats = list(zip(args.placeholder_tokens, placeholder_token_ids, initializer_token_id_lens)) | ||
| 534 | print(f"Added {len(placeholder_token_ids)} new tokens: {placeholder_token_stats}") | ||
| 535 | |||
| 536 | if args.scale_lr: | ||
| 537 | args.learning_rate = ( | ||
| 538 | args.learning_rate * args.gradient_accumulation_steps * | ||
| 539 | args.train_batch_size * accelerator.num_processes | ||
| 540 | ) | ||
| 541 | |||
| 542 | if args.find_lr: | ||
| 543 | args.learning_rate = 1e-5 | ||
| 544 | |||
| 545 | if args.use_8bit_adam: | ||
| 546 | try: | ||
| 547 | import bitsandbytes as bnb | ||
| 548 | except ImportError: | ||
| 549 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
| 550 | |||
| 551 | optimizer_class = bnb.optim.AdamW8bit | ||
| 552 | else: | ||
| 553 | optimizer_class = torch.optim.AdamW | ||
| 554 | |||
| 555 | optimizer = optimizer_class( | ||
| 556 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 557 | lr=args.learning_rate, | ||
| 558 | betas=(args.adam_beta1, args.adam_beta2), | ||
| 559 | weight_decay=args.adam_weight_decay, | ||
| 560 | eps=args.adam_epsilon, | ||
| 561 | amsgrad=args.adam_amsgrad, | ||
| 562 | ) | ||
| 563 | |||
| 564 | weight_dtype = torch.float32 | ||
| 565 | if args.mixed_precision == "fp16": | ||
| 566 | weight_dtype = torch.float16 | ||
| 567 | elif args.mixed_precision == "bf16": | ||
| 568 | weight_dtype = torch.bfloat16 | ||
| 569 | |||
| 570 | def keyword_filter(item: VlpnDataItem): | ||
| 571 | cond1 = any( | ||
| 572 | keyword in part | ||
| 573 | for keyword in args.placeholder_tokens | ||
| 574 | for part in item.prompt | ||
| 575 | ) | ||
| 576 | cond3 = args.collection is None or args.collection in item.collection | ||
| 577 | cond4 = args.exclude_collections is None or not any( | ||
| 578 | collection in item.collection | ||
| 579 | for collection in args.exclude_collections | ||
| 580 | ) | ||
| 581 | return cond1 and cond3 and cond4 | ||
| 582 | |||
| 583 | datamodule = VlpnDataModule( | ||
| 584 | data_file=args.train_data_file, | ||
| 585 | batch_size=args.train_batch_size, | ||
| 586 | tokenizer=tokenizer, | ||
| 587 | class_subdir=args.class_image_dir, | ||
| 588 | num_class_images=args.num_class_images, | ||
| 589 | size=args.resolution, | ||
| 590 | num_buckets=args.num_buckets, | ||
| 591 | progressive_buckets=args.progressive_buckets, | ||
| 592 | bucket_step_size=args.bucket_step_size, | ||
| 593 | bucket_max_pixels=args.bucket_max_pixels, | ||
| 594 | dropout=args.tag_dropout, | ||
| 595 | shuffle=not args.no_tag_shuffle, | ||
| 596 | template_key=args.train_data_template, | ||
| 597 | valid_set_size=args.valid_set_size, | ||
| 598 | valid_set_repeat=args.valid_set_repeat, | ||
| 599 | seed=args.seed, | ||
| 600 | filter=keyword_filter, | ||
| 601 | dtype=weight_dtype | ||
| 602 | ) | ||
| 603 | datamodule.setup() | ||
| 604 | |||
| 605 | train_dataloader = datamodule.train_dataloader | ||
| 606 | val_dataloader = datamodule.val_dataloader | ||
| 607 | |||
| 608 | if args.num_class_images != 0: | ||
| 609 | generate_class_images( | ||
| 610 | accelerator, | ||
| 611 | text_encoder, | ||
| 612 | vae, | ||
| 613 | unet, | ||
| 614 | tokenizer, | ||
| 615 | sample_scheduler, | ||
| 616 | datamodule.data_train, | ||
| 617 | args.sample_batch_size, | ||
| 618 | args.sample_image_size, | ||
| 619 | args.sample_steps | ||
| 620 | ) | ||
| 621 | |||
| 622 | lr_scheduler = get_scheduler( | ||
| 623 | args.lr_scheduler, | ||
| 624 | optimizer=optimizer, | ||
| 625 | num_training_steps_per_epoch=len(train_dataloader), | ||
| 626 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 627 | min_lr=args.lr_min_lr, | ||
| 628 | warmup_func=args.lr_warmup_func, | ||
| 629 | annealing_func=args.lr_annealing_func, | ||
| 630 | warmup_exp=args.lr_warmup_exp, | ||
| 631 | annealing_exp=args.lr_annealing_exp, | ||
| 632 | cycles=args.lr_cycles, | ||
| 633 | train_epochs=args.num_train_epochs, | ||
| 634 | warmup_epochs=args.lr_warmup_epochs, | ||
| 635 | ) | ||
| 636 | |||
| 637 | trainer = Trainer( | ||
| 638 | accelerator=accelerator, | ||
| 639 | unet=unet, | ||
| 640 | text_encoder=text_encoder, | ||
| 641 | tokenizer=tokenizer, | ||
| 642 | vae=vae, | ||
| 643 | noise_scheduler=noise_scheduler, | ||
| 644 | sample_scheduler=sample_scheduler, | ||
| 645 | train_dataloader=train_dataloader, | ||
| 646 | val_dataloader=val_dataloader, | ||
| 647 | dtype=weight_dtype, | ||
| 648 | ) | ||
| 649 | |||
| 650 | trainer( | ||
| 651 | strategy_class=TextualInversionTrainingStrategy, | ||
| 652 | optimizer=optimizer, | ||
| 653 | lr_scheduler=lr_scheduler, | ||
| 654 | num_train_epochs=args.num_train_epochs, | ||
| 655 | sample_frequency=args.sample_frequency, | ||
| 656 | checkpoint_frequency=args.checkpoint_frequency, | ||
| 657 | global_step_offset=global_step_offset, | ||
| 658 | prior_loss_weight=args.prior_loss_weight, | ||
| 659 | output_dir=output_dir, | ||
| 660 | placeholder_tokens=args.placeholder_tokens, | ||
| 661 | placeholder_token_ids=placeholder_token_ids, | ||
| 662 | learning_rate=args.learning_rate, | ||
| 663 | sample_steps=args.sample_steps, | ||
| 664 | sample_image_size=args.sample_image_size, | ||
| 665 | sample_batch_size=args.sample_batch_size, | ||
| 666 | sample_batches=args.sample_batches, | ||
| 667 | seed=args.seed, | ||
| 668 | ) | ||
| 669 | |||
| 670 | |||
| 671 | if __name__ == "__main__": | ||
| 672 | main() | ||
diff --git a/train_dreambooth.py b/train_dreambooth.py index 53776ba..71bad7e 100644 --- a/train_dreambooth.py +++ b/train_dreambooth.py | |||
| @@ -20,10 +20,9 @@ from slugify import slugify | |||
| 20 | from util import load_config, load_embeddings_from_dir | 20 | from util import load_config, load_embeddings_from_dir |
| 21 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 21 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 22 | from data.csv import VlpnDataModule, VlpnDataItem | 22 | from data.csv import VlpnDataModule, VlpnDataItem |
| 23 | from training.common import loss_step, train_loop, generate_class_images, add_placeholder_tokens, get_models | ||
| 24 | from training.optimization import get_scheduler | 23 | from training.optimization import get_scheduler |
| 25 | from training.lr import LRFinder | 24 | from training.lr import LRFinder |
| 26 | from training.util import CheckpointerBase, EMAModel, save_args | 25 | from training.util import CheckpointerBase, EMAModel, save_args, generate_class_images, add_placeholder_tokens, get_models |
| 27 | from models.clip.tokenizer import MultiCLIPTokenizer | 26 | from models.clip.tokenizer import MultiCLIPTokenizer |
| 28 | 27 | ||
| 29 | logger = get_logger(__name__) | 28 | logger = get_logger(__name__) |
diff --git a/train_ti.py b/train_ti.py index 8631892..deed84c 100644 --- a/train_ti.py +++ b/train_ti.py | |||
| @@ -19,10 +19,11 @@ from slugify import slugify | |||
| 19 | from util import load_config, load_embeddings_from_dir | 19 | from util import load_config, load_embeddings_from_dir |
| 20 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 20 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 21 | from data.csv import VlpnDataModule, VlpnDataItem | 21 | from data.csv import VlpnDataModule, VlpnDataItem |
| 22 | from training.common import loss_step, train_loop, generate_class_images, add_placeholder_tokens, get_models | 22 | from trainer.base import Checkpointer |
| 23 | from training.functional import loss_step, train_loop, generate_class_images, add_placeholder_tokens, get_models | ||
| 23 | from training.optimization import get_scheduler | 24 | from training.optimization import get_scheduler |
| 24 | from training.lr import LRFinder | 25 | from training.lr import LRFinder |
| 25 | from training.util import CheckpointerBase, EMAModel, save_args | 26 | from training.util import EMAModel, save_args |
| 26 | from models.clip.tokenizer import MultiCLIPTokenizer | 27 | from models.clip.tokenizer import MultiCLIPTokenizer |
| 27 | 28 | ||
| 28 | logger = get_logger(__name__) | 29 | logger = get_logger(__name__) |
| @@ -480,38 +481,20 @@ def parse_args(): | |||
| 480 | return args | 481 | return args |
| 481 | 482 | ||
| 482 | 483 | ||
| 483 | class Checkpointer(CheckpointerBase): | 484 | class TextualInversionCheckpointer(Checkpointer): |
| 484 | def __init__( | 485 | def __init__( |
| 485 | self, | 486 | self, |
| 486 | weight_dtype: torch.dtype, | ||
| 487 | accelerator: Accelerator, | ||
| 488 | vae: AutoencoderKL, | ||
| 489 | unet: UNet2DConditionModel, | ||
| 490 | tokenizer: MultiCLIPTokenizer, | ||
| 491 | text_encoder: CLIPTextModel, | ||
| 492 | ema_embeddings: EMAModel, | 487 | ema_embeddings: EMAModel, |
| 493 | scheduler, | ||
| 494 | placeholder_tokens, | ||
| 495 | placeholder_token_ids, | ||
| 496 | *args, | 488 | *args, |
| 497 | **kwargs | 489 | **kwargs, |
| 498 | ): | 490 | ): |
| 499 | super().__init__(*args, **kwargs) | 491 | super().__init__(*args, **kwargs) |
| 500 | 492 | ||
| 501 | self.weight_dtype = weight_dtype | ||
| 502 | self.accelerator = accelerator | ||
| 503 | self.vae = vae | ||
| 504 | self.unet = unet | ||
| 505 | self.tokenizer = tokenizer | ||
| 506 | self.text_encoder = text_encoder | ||
| 507 | self.ema_embeddings = ema_embeddings | 493 | self.ema_embeddings = ema_embeddings |
| 508 | self.scheduler = scheduler | ||
| 509 | self.placeholder_tokens = placeholder_tokens | ||
| 510 | self.placeholder_token_ids = placeholder_token_ids | ||
| 511 | 494 | ||
| 512 | @torch.no_grad() | 495 | @torch.no_grad() |
| 513 | def checkpoint(self, step, postfix): | 496 | def checkpoint(self, step, postfix): |
| 514 | print("Saving checkpoint for step %d..." % step) | 497 | print(f"Saving checkpoint for step {step}...") |
| 515 | 498 | ||
| 516 | checkpoints_path = self.output_dir.joinpath("checkpoints") | 499 | checkpoints_path = self.output_dir.joinpath("checkpoints") |
| 517 | checkpoints_path.mkdir(parents=True, exist_ok=True) | 500 | checkpoints_path.mkdir(parents=True, exist_ok=True) |
| @@ -519,7 +502,8 @@ class Checkpointer(CheckpointerBase): | |||
| 519 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | 502 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) |
| 520 | 503 | ||
| 521 | ema_context = self.ema_embeddings.apply_temporary( | 504 | ema_context = self.ema_embeddings.apply_temporary( |
| 522 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if self.ema_embeddings is not None else nullcontext() | 505 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() |
| 506 | ) if self.ema_embeddings is not None else nullcontext() | ||
| 523 | 507 | ||
| 524 | with ema_context: | 508 | with ema_context: |
| 525 | for (token, ids) in zip(self.placeholder_tokens, self.placeholder_token_ids): | 509 | for (token, ids) in zip(self.placeholder_tokens, self.placeholder_token_ids): |
| @@ -528,42 +512,14 @@ class Checkpointer(CheckpointerBase): | |||
| 528 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | 512 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") |
| 529 | ) | 513 | ) |
| 530 | 514 | ||
| 531 | del text_encoder | 515 | @torch.inference_mode() |
| 532 | |||
| 533 | @torch.no_grad() | ||
| 534 | def save_samples(self, step): | 516 | def save_samples(self, step): |
| 535 | unet = self.accelerator.unwrap_model(self.unet) | ||
| 536 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 537 | |||
| 538 | ema_context = self.ema_embeddings.apply_temporary( | 517 | ema_context = self.ema_embeddings.apply_temporary( |
| 539 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if self.ema_embeddings is not None else nullcontext() | 518 | self.text_encoder.text_model.embeddings.temp_token_embedding.parameters() |
| 519 | ) if self.ema_embeddings is not None else nullcontext() | ||
| 540 | 520 | ||
| 541 | with ema_context: | 521 | with ema_context: |
| 542 | orig_unet_dtype = unet.dtype | 522 | super().save_samples(step) |
| 543 | orig_text_encoder_dtype = text_encoder.dtype | ||
| 544 | |||
| 545 | unet.to(dtype=self.weight_dtype) | ||
| 546 | text_encoder.to(dtype=self.weight_dtype) | ||
| 547 | |||
| 548 | pipeline = VlpnStableDiffusion( | ||
| 549 | text_encoder=text_encoder, | ||
| 550 | vae=self.vae, | ||
| 551 | unet=self.unet, | ||
| 552 | tokenizer=self.tokenizer, | ||
| 553 | scheduler=self.scheduler, | ||
| 554 | ).to(self.accelerator.device) | ||
| 555 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 556 | |||
| 557 | super().save_samples(pipeline, step) | ||
| 558 | |||
| 559 | unet.to(dtype=orig_unet_dtype) | ||
| 560 | text_encoder.to(dtype=orig_text_encoder_dtype) | ||
| 561 | |||
| 562 | del text_encoder | ||
| 563 | del pipeline | ||
| 564 | |||
| 565 | if torch.cuda.is_available(): | ||
| 566 | torch.cuda.empty_cache() | ||
| 567 | 523 | ||
| 568 | 524 | ||
| 569 | def main(): | 525 | def main(): |
| @@ -806,8 +762,8 @@ def main(): | |||
| 806 | args.seed, | 762 | args.seed, |
| 807 | ) | 763 | ) |
| 808 | 764 | ||
| 809 | checkpointer = Checkpointer( | 765 | checkpointer = TextualInversionCheckpointer( |
| 810 | weight_dtype=weight_dtype, | 766 | dtype=weight_dtype, |
| 811 | train_dataloader=train_dataloader, | 767 | train_dataloader=train_dataloader, |
| 812 | val_dataloader=val_dataloader, | 768 | val_dataloader=val_dataloader, |
| 813 | accelerator=accelerator, | 769 | accelerator=accelerator, |
| @@ -816,7 +772,7 @@ def main(): | |||
| 816 | tokenizer=tokenizer, | 772 | tokenizer=tokenizer, |
| 817 | text_encoder=text_encoder, | 773 | text_encoder=text_encoder, |
| 818 | ema_embeddings=ema_embeddings, | 774 | ema_embeddings=ema_embeddings, |
| 819 | scheduler=sample_scheduler, | 775 | sample_scheduler=sample_scheduler, |
| 820 | placeholder_tokens=args.placeholder_tokens, | 776 | placeholder_tokens=args.placeholder_tokens, |
| 821 | placeholder_token_ids=placeholder_token_ids, | 777 | placeholder_token_ids=placeholder_token_ids, |
| 822 | output_dir=output_dir, | 778 | output_dir=output_dir, |
diff --git a/trainer/base.py b/trainer/base.py new file mode 100644 index 0000000..e700dd6 --- /dev/null +++ b/trainer/base.py | |||
| @@ -0,0 +1,544 @@ | |||
| 1 | from pathlib import Path | ||
| 2 | import math | ||
| 3 | from contextlib import contextmanager | ||
| 4 | from typing import Type, Optional | ||
| 5 | import itertools | ||
| 6 | from functools import partial | ||
| 7 | |||
| 8 | import torch | ||
| 9 | import torch.nn as nn | ||
| 10 | import torch.nn.functional as F | ||
| 11 | from torch.utils.data import DataLoader | ||
| 12 | |||
| 13 | from accelerate import Accelerator | ||
| 14 | from transformers import CLIPTextModel | ||
| 15 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler | ||
| 16 | |||
| 17 | from tqdm.auto import tqdm | ||
| 18 | from PIL import Image | ||
| 19 | |||
| 20 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 21 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 22 | from models.clip.util import get_extended_embeddings | ||
| 23 | from training.util import AverageMeter | ||
| 24 | |||
| 25 | |||
| 26 | def make_grid(images, rows, cols): | ||
| 27 | w, h = images[0].size | ||
| 28 | grid = Image.new('RGB', size=(cols*w, rows*h)) | ||
| 29 | for i, image in enumerate(images): | ||
| 30 | grid.paste(image, box=(i % cols*w, i//cols*h)) | ||
| 31 | return grid | ||
| 32 | |||
| 33 | |||
| 34 | class Checkpointer(): | ||
| 35 | def __init__( | ||
| 36 | self, | ||
| 37 | accelerator: Accelerator, | ||
| 38 | vae: AutoencoderKL, | ||
| 39 | unet: UNet2DConditionModel, | ||
| 40 | text_encoder: CLIPTextModel, | ||
| 41 | tokenizer: MultiCLIPTokenizer, | ||
| 42 | sample_scheduler, | ||
| 43 | dtype, | ||
| 44 | train_dataloader: DataLoader, | ||
| 45 | val_dataloader: DataLoader, | ||
| 46 | output_dir: Path, | ||
| 47 | sample_steps: int = 20, | ||
| 48 | sample_guidance_scale: float = 7.5, | ||
| 49 | sample_image_size: int = 768, | ||
| 50 | sample_batches: int = 1, | ||
| 51 | sample_batch_size: int = 1, | ||
| 52 | seed: Optional[int] = None, | ||
| 53 | *args, | ||
| 54 | **kwargs, | ||
| 55 | ): | ||
| 56 | self.accelerator = accelerator | ||
| 57 | self.vae = vae | ||
| 58 | self.unet = unet | ||
| 59 | self.text_encoder = text_encoder | ||
| 60 | self.tokenizer = tokenizer | ||
| 61 | self.sample_scheduler = sample_scheduler | ||
| 62 | self.dtype = dtype | ||
| 63 | self.train_dataloader = train_dataloader | ||
| 64 | self.val_dataloader = val_dataloader | ||
| 65 | self.output_dir = output_dir | ||
| 66 | self.sample_steps = sample_steps | ||
| 67 | self.sample_guidance_scale = sample_guidance_scale | ||
| 68 | self.sample_image_size = sample_image_size | ||
| 69 | self.sample_batches = sample_batches | ||
| 70 | self.sample_batch_size = sample_batch_size | ||
| 71 | self.seed = seed if seed is not None else torch.random.seed() | ||
| 72 | |||
| 73 | @torch.no_grad() | ||
| 74 | def checkpoint(self, step: int, postfix: str): | ||
| 75 | pass | ||
| 76 | |||
| 77 | @torch.inference_mode() | ||
| 78 | def save_samples(self, step: int): | ||
| 79 | print(f"Saving samples for step {step}...") | ||
| 80 | |||
| 81 | samples_path = self.output_dir.joinpath("samples") | ||
| 82 | |||
| 83 | grid_cols = min(self.sample_batch_size, 4) | ||
| 84 | grid_rows = (self.sample_batches * self.sample_batch_size) // grid_cols | ||
| 85 | |||
| 86 | unet = self.accelerator.unwrap_model(self.unet) | ||
| 87 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 88 | |||
| 89 | orig_unet_dtype = unet.dtype | ||
| 90 | orig_text_encoder_dtype = text_encoder.dtype | ||
| 91 | |||
| 92 | unet.to(dtype=self.dtype) | ||
| 93 | text_encoder.to(dtype=self.dtype) | ||
| 94 | |||
| 95 | pipeline = VlpnStableDiffusion( | ||
| 96 | text_encoder=text_encoder, | ||
| 97 | vae=self.vae, | ||
| 98 | unet=self.unet, | ||
| 99 | tokenizer=self.tokenizer, | ||
| 100 | scheduler=self.sample_scheduler, | ||
| 101 | ).to(self.accelerator.device) | ||
| 102 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 103 | |||
| 104 | generator = torch.Generator(device=self.accelerator.device).manual_seed(self.seed) | ||
| 105 | |||
| 106 | for pool, data, gen in [ | ||
| 107 | ("stable", self.val_dataloader, generator), | ||
| 108 | ("val", self.val_dataloader, None), | ||
| 109 | ("train", self.train_dataloader, None) | ||
| 110 | ]: | ||
| 111 | all_samples = [] | ||
| 112 | file_path = samples_path.joinpath(pool, f"step_{step}.jpg") | ||
| 113 | file_path.parent.mkdir(parents=True, exist_ok=True) | ||
| 114 | |||
| 115 | batches = list(itertools.islice(itertools.cycle(data), self.sample_batch_size * self.sample_batches)) | ||
| 116 | prompt_ids = [ | ||
| 117 | prompt | ||
| 118 | for batch in batches | ||
| 119 | for prompt in batch["prompt_ids"] | ||
| 120 | ] | ||
| 121 | nprompt_ids = [ | ||
| 122 | prompt | ||
| 123 | for batch in batches | ||
| 124 | for prompt in batch["nprompt_ids"] | ||
| 125 | ] | ||
| 126 | |||
| 127 | for i in range(self.sample_batches): | ||
| 128 | start = i * self.sample_batch_size | ||
| 129 | end = (i + 1) * self.sample_batch_size | ||
| 130 | prompt = prompt_ids[start:end] | ||
| 131 | nprompt = nprompt_ids[start:end] | ||
| 132 | |||
| 133 | samples = pipeline( | ||
| 134 | prompt=prompt, | ||
| 135 | negative_prompt=nprompt, | ||
| 136 | height=self.sample_image_size, | ||
| 137 | width=self.sample_image_size, | ||
| 138 | generator=gen, | ||
| 139 | guidance_scale=self.sample_guidance_scale, | ||
| 140 | num_inference_steps=self.sample_steps, | ||
| 141 | output_type='pil' | ||
| 142 | ).images | ||
| 143 | |||
| 144 | all_samples += samples | ||
| 145 | |||
| 146 | image_grid = make_grid(all_samples, grid_rows, grid_cols) | ||
| 147 | image_grid.save(file_path, quality=85) | ||
| 148 | |||
| 149 | unet.to(dtype=orig_unet_dtype) | ||
| 150 | text_encoder.to(dtype=orig_text_encoder_dtype) | ||
| 151 | |||
| 152 | del unet | ||
| 153 | del text_encoder | ||
| 154 | del generator | ||
| 155 | del pipeline | ||
| 156 | |||
| 157 | if torch.cuda.is_available(): | ||
| 158 | torch.cuda.empty_cache() | ||
| 159 | |||
| 160 | |||
| 161 | class TrainingStrategy(): | ||
| 162 | def __init__( | ||
| 163 | self, | ||
| 164 | tokenizer: MultiCLIPTokenizer, | ||
| 165 | *args, | ||
| 166 | **kwargs, | ||
| 167 | ): | ||
| 168 | self.tokenizer = tokenizer | ||
| 169 | self.checkpointer = Checkpointer(tokenizer=tokenizer, *args, **kwargs) | ||
| 170 | |||
| 171 | @property | ||
| 172 | def main_model(self) -> nn.Module: | ||
| 173 | ... | ||
| 174 | |||
| 175 | @contextmanager | ||
| 176 | def on_train(self, epoch: int): | ||
| 177 | try: | ||
| 178 | self.tokenizer.train() | ||
| 179 | yield | ||
| 180 | finally: | ||
| 181 | pass | ||
| 182 | |||
| 183 | @contextmanager | ||
| 184 | def on_eval(self): | ||
| 185 | try: | ||
| 186 | self.tokenizer.eval() | ||
| 187 | yield | ||
| 188 | finally: | ||
| 189 | pass | ||
| 190 | |||
| 191 | def on_before_optimize(self, epoch: int): | ||
| 192 | ... | ||
| 193 | |||
| 194 | def on_after_optimize(self, lr: float): | ||
| 195 | ... | ||
| 196 | |||
| 197 | def on_log(): | ||
| 198 | return {} | ||
| 199 | |||
| 200 | |||
| 201 | def loss_step( | ||
| 202 | vae: AutoencoderKL, | ||
| 203 | unet: UNet2DConditionModel, | ||
| 204 | text_encoder: CLIPTextModel, | ||
| 205 | seed: int, | ||
| 206 | noise_scheduler, | ||
| 207 | prior_loss_weight: float, | ||
| 208 | step: int, | ||
| 209 | batch: dict, | ||
| 210 | eval: bool = False | ||
| 211 | ): | ||
| 212 | # Convert images to latent space | ||
| 213 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach() | ||
| 214 | latents = latents * 0.18215 | ||
| 215 | |||
| 216 | generator = torch.Generator(device=latents.device).manual_seed(seed + step) if eval else None | ||
| 217 | |||
| 218 | # Sample noise that we'll add to the latents | ||
| 219 | noise = torch.randn( | ||
| 220 | latents.shape, | ||
| 221 | dtype=latents.dtype, | ||
| 222 | layout=latents.layout, | ||
| 223 | device=latents.device, | ||
| 224 | generator=generator | ||
| 225 | ) | ||
| 226 | bsz = latents.shape[0] | ||
| 227 | # Sample a random timestep for each image | ||
| 228 | timesteps = torch.randint( | ||
| 229 | 0, | ||
| 230 | noise_scheduler.config.num_train_timesteps, | ||
| 231 | (bsz,), | ||
| 232 | generator=generator, | ||
| 233 | device=latents.device, | ||
| 234 | ) | ||
| 235 | timesteps = timesteps.long() | ||
| 236 | |||
| 237 | # Add noise to the latents according to the noise magnitude at each timestep | ||
| 238 | # (this is the forward diffusion process) | ||
| 239 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 240 | noisy_latents = noisy_latents.to(dtype=unet.dtype) | ||
| 241 | |||
| 242 | # Get the text embedding for conditioning | ||
| 243 | encoder_hidden_states = get_extended_embeddings( | ||
| 244 | text_encoder, | ||
| 245 | batch["input_ids"], | ||
| 246 | batch["attention_mask"] | ||
| 247 | ) | ||
| 248 | encoder_hidden_states = encoder_hidden_states.to(dtype=unet.dtype) | ||
| 249 | |||
| 250 | # Predict the noise residual | ||
| 251 | model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 252 | |||
| 253 | # Get the target for loss depending on the prediction type | ||
| 254 | if noise_scheduler.config.prediction_type == "epsilon": | ||
| 255 | target = noise | ||
| 256 | elif noise_scheduler.config.prediction_type == "v_prediction": | ||
| 257 | target = noise_scheduler.get_velocity(latents, noise, timesteps) | ||
| 258 | else: | ||
| 259 | raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | ||
| 260 | |||
| 261 | if batch["with_prior"].all(): | ||
| 262 | # Chunk the noise and model_pred into two parts and compute the loss on each part separately. | ||
| 263 | model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | ||
| 264 | target, target_prior = torch.chunk(target, 2, dim=0) | ||
| 265 | |||
| 266 | # Compute instance loss | ||
| 267 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 268 | |||
| 269 | # Compute prior loss | ||
| 270 | prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") | ||
| 271 | |||
| 272 | # Add the prior loss to the instance loss. | ||
| 273 | loss = loss + prior_loss_weight * prior_loss | ||
| 274 | else: | ||
| 275 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | ||
| 276 | |||
| 277 | acc = (model_pred == target).float().mean() | ||
| 278 | |||
| 279 | return loss, acc, bsz | ||
| 280 | |||
| 281 | |||
| 282 | def train_loop( | ||
| 283 | strategy: TrainingStrategy, | ||
| 284 | accelerator: Accelerator, | ||
| 285 | vae: AutoencoderKL, | ||
| 286 | unet: UNet2DConditionModel, | ||
| 287 | text_encoder: CLIPTextModel, | ||
| 288 | train_dataloader: DataLoader, | ||
| 289 | val_dataloader: DataLoader, | ||
| 290 | seed: int, | ||
| 291 | optimizer: torch.optim.Optimizer, | ||
| 292 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | ||
| 293 | noise_scheduler, | ||
| 294 | prior_loss_weight: float = 1.0, | ||
| 295 | sample_frequency: int = 10, | ||
| 296 | checkpoint_frequency: int = 50, | ||
| 297 | global_step_offset: int = 0, | ||
| 298 | num_epochs: int = 100, | ||
| 299 | ): | ||
| 300 | num_training_steps_per_epoch = math.ceil( | ||
| 301 | len(train_dataloader) / accelerator.gradient_accumulation_steps | ||
| 302 | ) | ||
| 303 | num_val_steps_per_epoch = len(val_dataloader) | ||
| 304 | |||
| 305 | num_training_steps = num_training_steps_per_epoch * num_epochs | ||
| 306 | num_val_steps = num_val_steps_per_epoch * num_epochs | ||
| 307 | |||
| 308 | global_step = 0 | ||
| 309 | |||
| 310 | avg_loss = AverageMeter() | ||
| 311 | avg_acc = AverageMeter() | ||
| 312 | |||
| 313 | avg_loss_val = AverageMeter() | ||
| 314 | avg_acc_val = AverageMeter() | ||
| 315 | |||
| 316 | max_acc_val = 0.0 | ||
| 317 | |||
| 318 | local_progress_bar = tqdm( | ||
| 319 | range(num_training_steps_per_epoch + num_val_steps_per_epoch), | ||
| 320 | disable=not accelerator.is_local_main_process, | ||
| 321 | dynamic_ncols=True | ||
| 322 | ) | ||
| 323 | local_progress_bar.set_description(f"Epoch 1 / {num_epochs}") | ||
| 324 | |||
| 325 | global_progress_bar = tqdm( | ||
| 326 | range(num_training_steps + num_val_steps), | ||
| 327 | disable=not accelerator.is_local_main_process, | ||
| 328 | dynamic_ncols=True | ||
| 329 | ) | ||
| 330 | global_progress_bar.set_description("Total progress") | ||
| 331 | |||
| 332 | loss_step_ = partial( | ||
| 333 | loss_step, | ||
| 334 | vae, | ||
| 335 | unet, | ||
| 336 | text_encoder, | ||
| 337 | seed, | ||
| 338 | noise_scheduler, | ||
| 339 | prior_loss_weight | ||
| 340 | ) | ||
| 341 | |||
| 342 | try: | ||
| 343 | for epoch in range(num_epochs): | ||
| 344 | if accelerator.is_main_process: | ||
| 345 | if epoch % sample_frequency == 0 and epoch != 0: | ||
| 346 | strategy.checkpointer.save_samples(global_step + global_step_offset) | ||
| 347 | |||
| 348 | if epoch % checkpoint_frequency == 0 and epoch != 0: | ||
| 349 | strategy.checkpointer.checkpoint(global_step + global_step_offset, "training") | ||
| 350 | |||
| 351 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
| 352 | local_progress_bar.reset() | ||
| 353 | |||
| 354 | strategy.main_model.train() | ||
| 355 | |||
| 356 | with strategy.on_train(epoch): | ||
| 357 | for step, batch in enumerate(train_dataloader): | ||
| 358 | with accelerator.accumulate(strategy.main_model): | ||
| 359 | loss, acc, bsz = loss_step_(step, batch) | ||
| 360 | |||
| 361 | accelerator.backward(loss) | ||
| 362 | |||
| 363 | strategy.on_before_optimize(epoch) | ||
| 364 | |||
| 365 | optimizer.step() | ||
| 366 | lr_scheduler.step() | ||
| 367 | optimizer.zero_grad(set_to_none=True) | ||
| 368 | |||
| 369 | avg_loss.update(loss.detach_(), bsz) | ||
| 370 | avg_acc.update(acc.detach_(), bsz) | ||
| 371 | |||
| 372 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
| 373 | if accelerator.sync_gradients: | ||
| 374 | strategy.on_after_optimize(lr_scheduler.get_last_lr()[0]) | ||
| 375 | |||
| 376 | local_progress_bar.update(1) | ||
| 377 | global_progress_bar.update(1) | ||
| 378 | |||
| 379 | global_step += 1 | ||
| 380 | |||
| 381 | logs = { | ||
| 382 | "train/loss": avg_loss.avg.item(), | ||
| 383 | "train/acc": avg_acc.avg.item(), | ||
| 384 | "train/cur_loss": loss.item(), | ||
| 385 | "train/cur_acc": acc.item(), | ||
| 386 | "lr": lr_scheduler.get_last_lr()[0], | ||
| 387 | } | ||
| 388 | logs.update(strategy.on_log()) | ||
| 389 | |||
| 390 | accelerator.log(logs, step=global_step) | ||
| 391 | |||
| 392 | local_progress_bar.set_postfix(**logs) | ||
| 393 | |||
| 394 | if global_step >= num_training_steps: | ||
| 395 | break | ||
| 396 | |||
| 397 | accelerator.wait_for_everyone() | ||
| 398 | |||
| 399 | strategy.main_model.eval() | ||
| 400 | |||
| 401 | cur_loss_val = AverageMeter() | ||
| 402 | cur_acc_val = AverageMeter() | ||
| 403 | |||
| 404 | with torch.inference_mode(), strategy.on_eval(): | ||
| 405 | for step, batch in enumerate(val_dataloader): | ||
| 406 | loss, acc, bsz = loss_step_(step, batch, True) | ||
| 407 | |||
| 408 | loss = loss.detach_() | ||
| 409 | acc = acc.detach_() | ||
| 410 | |||
| 411 | cur_loss_val.update(loss, bsz) | ||
| 412 | cur_acc_val.update(acc, bsz) | ||
| 413 | |||
| 414 | avg_loss_val.update(loss, bsz) | ||
| 415 | avg_acc_val.update(acc, bsz) | ||
| 416 | |||
| 417 | local_progress_bar.update(1) | ||
| 418 | global_progress_bar.update(1) | ||
| 419 | |||
| 420 | logs = { | ||
| 421 | "val/loss": avg_loss_val.avg.item(), | ||
| 422 | "val/acc": avg_acc_val.avg.item(), | ||
| 423 | "val/cur_loss": loss.item(), | ||
| 424 | "val/cur_acc": acc.item(), | ||
| 425 | } | ||
| 426 | local_progress_bar.set_postfix(**logs) | ||
| 427 | |||
| 428 | logs["val/cur_loss"] = cur_loss_val.avg.item() | ||
| 429 | logs["val/cur_acc"] = cur_acc_val.avg.item() | ||
| 430 | |||
| 431 | accelerator.log(logs, step=global_step) | ||
| 432 | |||
| 433 | local_progress_bar.clear() | ||
| 434 | global_progress_bar.clear() | ||
| 435 | |||
| 436 | if accelerator.is_main_process: | ||
| 437 | if avg_acc_val.avg.item() > max_acc_val: | ||
| 438 | accelerator.print( | ||
| 439 | f"Global step {global_step}: Validation accuracy reached new maximum: {max_acc_val:.2e} -> {avg_acc_val.avg.item():.2e}") | ||
| 440 | strategy.checkpointer.checkpoint(global_step + global_step_offset, "milestone") | ||
| 441 | max_acc_val = avg_acc_val.avg.item() | ||
| 442 | |||
| 443 | # Create the pipeline using using the trained modules and save it. | ||
| 444 | if accelerator.is_main_process: | ||
| 445 | print("Finished!") | ||
| 446 | strategy.checkpointer.checkpoint(global_step + global_step_offset, "end") | ||
| 447 | strategy.checkpointer.save_samples(global_step + global_step_offset) | ||
| 448 | accelerator.end_training() | ||
| 449 | |||
| 450 | except KeyboardInterrupt: | ||
| 451 | if accelerator.is_main_process: | ||
| 452 | print("Interrupted") | ||
| 453 | strategy.checkpointer.checkpoint(global_step + global_step_offset, "end") | ||
| 454 | accelerator.end_training() | ||
| 455 | |||
| 456 | |||
| 457 | class Trainer(): | ||
| 458 | def __init__( | ||
| 459 | self, | ||
| 460 | accelerator: Accelerator, | ||
| 461 | unet: UNet2DConditionModel, | ||
| 462 | text_encoder: CLIPTextModel, | ||
| 463 | tokenizer: MultiCLIPTokenizer, | ||
| 464 | vae: AutoencoderKL, | ||
| 465 | noise_scheduler: DDPMScheduler, | ||
| 466 | sample_scheduler: DPMSolverMultistepScheduler, | ||
| 467 | train_dataloader: DataLoader, | ||
| 468 | val_dataloader: DataLoader, | ||
| 469 | dtype: torch.dtype, | ||
| 470 | ): | ||
| 471 | self.accelerator = accelerator | ||
| 472 | self.unet = unet | ||
| 473 | self.text_encoder = text_encoder | ||
| 474 | self.tokenizer = tokenizer | ||
| 475 | self.vae = vae | ||
| 476 | self.noise_scheduler = noise_scheduler | ||
| 477 | self.sample_scheduler = sample_scheduler | ||
| 478 | self.train_dataloader = train_dataloader | ||
| 479 | self.val_dataloader = val_dataloader | ||
| 480 | self.dtype = dtype | ||
| 481 | |||
| 482 | def __call__( | ||
| 483 | self, | ||
| 484 | strategy_class: Type[TrainingStrategy], | ||
| 485 | optimizer, | ||
| 486 | lr_scheduler, | ||
| 487 | num_train_epochs: int = 100, | ||
| 488 | sample_frequency: int = 20, | ||
| 489 | checkpoint_frequency: int = 50, | ||
| 490 | global_step_offset: int = 0, | ||
| 491 | prior_loss_weight: float = 0, | ||
| 492 | seed: Optional[int] = None, | ||
| 493 | **kwargs, | ||
| 494 | ): | ||
| 495 | unet, text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = self.accelerator.prepare( | ||
| 496 | self.unet, self.text_encoder, optimizer, self.train_dataloader, self.val_dataloader, lr_scheduler | ||
| 497 | ) | ||
| 498 | |||
| 499 | self.vae.to(self.accelerator.device, dtype=self.dtype) | ||
| 500 | |||
| 501 | for model in (unet, text_encoder, self.vae): | ||
| 502 | model.requires_grad_(False) | ||
| 503 | model.eval() | ||
| 504 | |||
| 505 | if seed is None: | ||
| 506 | seed = torch.random.seed() | ||
| 507 | |||
| 508 | strategy = strategy_class( | ||
| 509 | accelerator=self.accelerator, | ||
| 510 | vae=self.vae, | ||
| 511 | unet=unet, | ||
| 512 | text_encoder=text_encoder, | ||
| 513 | tokenizer=self.tokenizer, | ||
| 514 | sample_scheduler=self.sample_scheduler, | ||
| 515 | train_dataloader=train_dataloader, | ||
| 516 | val_dataloader=val_dataloader, | ||
| 517 | dtype=self.dtype, | ||
| 518 | seed=seed, | ||
| 519 | **kwargs | ||
| 520 | ) | ||
| 521 | |||
| 522 | if self.accelerator.is_main_process: | ||
| 523 | self.accelerator.init_trackers("textual_inversion") | ||
| 524 | |||
| 525 | train_loop( | ||
| 526 | strategy=strategy, | ||
| 527 | accelerator=self.accelerator, | ||
| 528 | vae=self.vae, | ||
| 529 | unet=unet, | ||
| 530 | text_encoder=text_encoder, | ||
| 531 | train_dataloader=train_dataloader, | ||
| 532 | val_dataloader=val_dataloader, | ||
| 533 | seed=seed, | ||
| 534 | optimizer=optimizer, | ||
| 535 | lr_scheduler=lr_scheduler, | ||
| 536 | noise_scheduler=self.noise_scheduler, | ||
| 537 | prior_loss_weight=prior_loss_weight, | ||
| 538 | sample_frequency=sample_frequency, | ||
| 539 | checkpoint_frequency=checkpoint_frequency, | ||
| 540 | global_step_offset=global_step_offset, | ||
| 541 | num_epochs=num_train_epochs, | ||
| 542 | ) | ||
| 543 | |||
| 544 | self.accelerator.free_memory() | ||
diff --git a/trainer/dreambooth.py b/trainer/dreambooth.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/trainer/dreambooth.py | |||
diff --git a/trainer/ti.py b/trainer/ti.py new file mode 100644 index 0000000..15cf747 --- /dev/null +++ b/trainer/ti.py | |||
| @@ -0,0 +1,164 @@ | |||
| 1 | from contextlib import contextmanager, nullcontext | ||
| 2 | |||
| 3 | import torch | ||
| 4 | |||
| 5 | from slugify import slugify | ||
| 6 | |||
| 7 | from diffusers import UNet2DConditionModel | ||
| 8 | from transformers import CLIPTextModel | ||
| 9 | |||
| 10 | from trainer.base import TrainingStrategy, Checkpointer | ||
| 11 | from training.util import EMAModel | ||
| 12 | |||
| 13 | |||
| 14 | class TextualInversionCheckpointer(Checkpointer): | ||
| 15 | def __init__( | ||
| 16 | self, | ||
| 17 | ema_embeddings: EMAModel, | ||
| 18 | *args, | ||
| 19 | **kwargs, | ||
| 20 | ): | ||
| 21 | super().__init__(*args, **kwargs) | ||
| 22 | |||
| 23 | self.ema_embeddings = ema_embeddings | ||
| 24 | |||
| 25 | @torch.no_grad() | ||
| 26 | def checkpoint(self, step, postfix): | ||
| 27 | print(f"Saving checkpoint for step {step}...") | ||
| 28 | |||
| 29 | checkpoints_path = self.output_dir.joinpath("checkpoints") | ||
| 30 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
| 31 | |||
| 32 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 33 | |||
| 34 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 35 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
| 36 | ) if self.ema_embeddings is not None else nullcontext() | ||
| 37 | |||
| 38 | with ema_context: | ||
| 39 | for (token, ids) in zip(self.placeholder_tokens, self.placeholder_token_ids): | ||
| 40 | text_encoder.text_model.embeddings.save_embed( | ||
| 41 | ids, | ||
| 42 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
| 43 | ) | ||
| 44 | |||
| 45 | @torch.inference_mode() | ||
| 46 | def save_samples(self, step): | ||
| 47 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 48 | self.text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
| 49 | ) if self.ema_embeddings is not None else nullcontext() | ||
| 50 | |||
| 51 | with ema_context: | ||
| 52 | super().save_samples(step) | ||
| 53 | |||
| 54 | |||
| 55 | class TextualInversionTrainingStrategy(TrainingStrategy): | ||
| 56 | def __init__( | ||
| 57 | self, | ||
| 58 | unet: UNet2DConditionModel, | ||
| 59 | text_encoder: CLIPTextModel, | ||
| 60 | placeholder_tokens: list[str], | ||
| 61 | placeholder_token_ids: list[list[int]], | ||
| 62 | learning_rate: float, | ||
| 63 | gradient_checkpointing: bool = False, | ||
| 64 | use_emb_decay: bool = False, | ||
| 65 | emb_decay_target: float = 0.4, | ||
| 66 | emb_decay_factor: float = 1, | ||
| 67 | emb_decay_start: float = 1e-4, | ||
| 68 | use_ema: bool = False, | ||
| 69 | ema_inv_gamma: float = 1.0, | ||
| 70 | ema_power: int = 1, | ||
| 71 | ema_max_decay: float = 0.9999, | ||
| 72 | *args, | ||
| 73 | **kwargs, | ||
| 74 | ): | ||
| 75 | super().__init__( | ||
| 76 | unet=unet, | ||
| 77 | text_encoder=text_encoder, | ||
| 78 | *args, | ||
| 79 | **kwargs | ||
| 80 | ) | ||
| 81 | |||
| 82 | self.text_encoder = text_encoder | ||
| 83 | self.unet = unet | ||
| 84 | |||
| 85 | self.placeholder_tokens = placeholder_tokens | ||
| 86 | self.placeholder_token_ids = placeholder_token_ids | ||
| 87 | |||
| 88 | self.gradient_checkpointing = gradient_checkpointing | ||
| 89 | |||
| 90 | self.learning_rate = learning_rate | ||
| 91 | self.use_emb_decay = use_emb_decay | ||
| 92 | self.emb_decay_target = emb_decay_target | ||
| 93 | self.emb_decay_factor = emb_decay_factor | ||
| 94 | self.emb_decay_start = emb_decay_start | ||
| 95 | |||
| 96 | self.text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) | ||
| 97 | |||
| 98 | self.ema_embeddings = None | ||
| 99 | |||
| 100 | if use_ema: | ||
| 101 | self.ema_embeddings = EMAModel( | ||
| 102 | self.text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 103 | inv_gamma=ema_inv_gamma, | ||
| 104 | power=ema_power, | ||
| 105 | max_value=ema_max_decay, | ||
| 106 | ) | ||
| 107 | |||
| 108 | self.checkpointer = TextualInversionCheckpointer( | ||
| 109 | unet=unet, | ||
| 110 | text_encoder=text_encoder, | ||
| 111 | ema_embeddings=self.ema_embeddings, | ||
| 112 | *args, | ||
| 113 | **kwargs | ||
| 114 | ) | ||
| 115 | |||
| 116 | @property | ||
| 117 | def main_model(self): | ||
| 118 | return self.text_encoder | ||
| 119 | |||
| 120 | @contextmanager | ||
| 121 | def on_train(self, epoch: int): | ||
| 122 | try: | ||
| 123 | if self.gradient_checkpointing: | ||
| 124 | self.unet.train() | ||
| 125 | |||
| 126 | with super().on_eval(): | ||
| 127 | yield | ||
| 128 | finally: | ||
| 129 | pass | ||
| 130 | |||
| 131 | @contextmanager | ||
| 132 | def on_eval(self): | ||
| 133 | try: | ||
| 134 | if self.gradient_checkpointing: | ||
| 135 | self.unet.eval() | ||
| 136 | |||
| 137 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 138 | self.text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
| 139 | ) if self.ema_embeddings is not None else nullcontext() | ||
| 140 | |||
| 141 | with ema_context, super().on_eval(): | ||
| 142 | yield | ||
| 143 | finally: | ||
| 144 | pass | ||
| 145 | |||
| 146 | @torch.no_grad() | ||
| 147 | def on_after_optimize(self, lr: float): | ||
| 148 | if self.use_emb_decay: | ||
| 149 | self.text_encoder.text_model.embeddings.normalize( | ||
| 150 | self.emb_decay_target, | ||
| 151 | min(1.0, max(0.0, self.emb_decay_factor * ((lr - self.emb_decay_start) / (self.learning_rate - self.emb_decay_start)))) | ||
| 152 | ) | ||
| 153 | |||
| 154 | if self.ema_embeddings is not None: | ||
| 155 | self.ema_embeddings.step(self.text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 156 | |||
| 157 | def on_log(self): | ||
| 158 | log = super().on_log() | ||
| 159 | added = {} | ||
| 160 | |||
| 161 | if self.ema_embeddings is not None: | ||
| 162 | added = {"ema_decay": self.ema_embeddings.decay} | ||
| 163 | |||
| 164 | return log.update(added) | ||
diff --git a/training/common.py b/training/functional.py index 5d1e3f9..2d81eca 100644 --- a/training/common.py +++ b/training/functional.py | |||
| @@ -16,19 +16,14 @@ from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | |||
| 16 | from models.clip.embeddings import ManagedCLIPTextEmbeddings, patch_managed_embeddings | 16 | from models.clip.embeddings import ManagedCLIPTextEmbeddings, patch_managed_embeddings |
| 17 | from models.clip.util import get_extended_embeddings | 17 | from models.clip.util import get_extended_embeddings |
| 18 | from models.clip.tokenizer import MultiCLIPTokenizer | 18 | from models.clip.tokenizer import MultiCLIPTokenizer |
| 19 | from training.util import AverageMeter, CheckpointerBase | 19 | from training.util import AverageMeter |
| 20 | from trainer.base import Checkpointer | ||
| 20 | 21 | ||
| 21 | 22 | ||
| 22 | def noop(*args, **kwards): | 23 | def const(result=None): |
| 23 | pass | 24 | def fn(*args, **kwargs): |
| 24 | 25 | return result | |
| 25 | 26 | return fn | |
| 26 | def noop_ctx(*args, **kwards): | ||
| 27 | return nullcontext() | ||
| 28 | |||
| 29 | |||
| 30 | def noop_on_log(): | ||
| 31 | return {} | ||
| 32 | 27 | ||
| 33 | 28 | ||
| 34 | def generate_class_images( | 29 | def generate_class_images( |
| @@ -210,7 +205,7 @@ def train_loop( | |||
| 210 | optimizer: torch.optim.Optimizer, | 205 | optimizer: torch.optim.Optimizer, |
| 211 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 206 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, |
| 212 | model: torch.nn.Module, | 207 | model: torch.nn.Module, |
| 213 | checkpointer: CheckpointerBase, | 208 | checkpointer: Checkpointer, |
| 214 | train_dataloader: DataLoader, | 209 | train_dataloader: DataLoader, |
| 215 | val_dataloader: DataLoader, | 210 | val_dataloader: DataLoader, |
| 216 | loss_step: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]], | 211 | loss_step: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]], |
| @@ -218,11 +213,11 @@ def train_loop( | |||
| 218 | checkpoint_frequency: int = 50, | 213 | checkpoint_frequency: int = 50, |
| 219 | global_step_offset: int = 0, | 214 | global_step_offset: int = 0, |
| 220 | num_epochs: int = 100, | 215 | num_epochs: int = 100, |
| 221 | on_log: Callable[[], dict[str, Any]] = noop_on_log, | 216 | on_log: Callable[[], dict[str, Any]] = const({}), |
| 222 | on_train: Callable[[int], _GeneratorContextManager] = noop_ctx, | 217 | on_train: Callable[[int], _GeneratorContextManager] = const(nullcontext()), |
| 223 | on_before_optimize: Callable[[int], None] = noop, | 218 | on_before_optimize: Callable[[int], None] = const(), |
| 224 | on_after_optimize: Callable[[float], None] = noop, | 219 | on_after_optimize: Callable[[float], None] = const(), |
| 225 | on_eval: Callable[[], _GeneratorContextManager] = noop_ctx | 220 | on_eval: Callable[[], _GeneratorContextManager] = const(nullcontext()) |
| 226 | ): | 221 | ): |
| 227 | num_training_steps_per_epoch = math.ceil(len(train_dataloader) / accelerator.gradient_accumulation_steps) | 222 | num_training_steps_per_epoch = math.ceil(len(train_dataloader) / accelerator.gradient_accumulation_steps) |
| 228 | num_val_steps_per_epoch = len(val_dataloader) | 223 | num_val_steps_per_epoch = len(val_dataloader) |
diff --git a/training/lora.py b/training/lora.py deleted file mode 100644 index 3857d78..0000000 --- a/training/lora.py +++ /dev/null | |||
| @@ -1,107 +0,0 @@ | |||
| 1 | import torch | ||
| 2 | import torch.nn as nn | ||
| 3 | |||
| 4 | from diffusers import ModelMixin, ConfigMixin | ||
| 5 | from diffusers.configuration_utils import register_to_config | ||
| 6 | from diffusers.models.cross_attention import CrossAttention | ||
| 7 | from diffusers.utils.import_utils import is_xformers_available | ||
| 8 | |||
| 9 | |||
| 10 | if is_xformers_available(): | ||
| 11 | import xformers | ||
| 12 | import xformers.ops | ||
| 13 | else: | ||
| 14 | xformers = None | ||
| 15 | |||
| 16 | |||
| 17 | class LoRALinearLayer(nn.Module): | ||
| 18 | def __init__(self, in_features, out_features, rank=4): | ||
| 19 | super().__init__() | ||
| 20 | |||
| 21 | if rank > min(in_features, out_features): | ||
| 22 | raise ValueError( | ||
| 23 | f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}" | ||
| 24 | ) | ||
| 25 | |||
| 26 | self.lora_down = nn.Linear(in_features, rank, bias=False) | ||
| 27 | self.lora_up = nn.Linear(rank, out_features, bias=False) | ||
| 28 | self.scale = 1.0 | ||
| 29 | |||
| 30 | nn.init.normal_(self.lora_down.weight, std=1 / rank) | ||
| 31 | nn.init.zeros_(self.lora_up.weight) | ||
| 32 | |||
| 33 | def forward(self, hidden_states): | ||
| 34 | down_hidden_states = self.lora_down(hidden_states) | ||
| 35 | up_hidden_states = self.lora_up(down_hidden_states) | ||
| 36 | |||
| 37 | return up_hidden_states | ||
| 38 | |||
| 39 | |||
| 40 | class LoRACrossAttnProcessor(nn.Module): | ||
| 41 | def __init__(self, hidden_size, cross_attention_dim=None, rank=4): | ||
| 42 | super().__init__() | ||
| 43 | |||
| 44 | self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size) | ||
| 45 | self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size) | ||
| 46 | self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size) | ||
| 47 | self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size) | ||
| 48 | |||
| 49 | def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0): | ||
| 50 | batch_size, sequence_length, _ = hidden_states.shape | ||
| 51 | attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length) | ||
| 52 | |||
| 53 | query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states) | ||
| 54 | query = attn.head_to_batch_dim(query) | ||
| 55 | |||
| 56 | encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | ||
| 57 | |||
| 58 | key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states) | ||
| 59 | value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states) | ||
| 60 | |||
| 61 | key = attn.head_to_batch_dim(key) | ||
| 62 | value = attn.head_to_batch_dim(value) | ||
| 63 | |||
| 64 | attention_probs = attn.get_attention_scores(query, key, attention_mask) | ||
| 65 | hidden_states = torch.bmm(attention_probs, value) | ||
| 66 | hidden_states = attn.batch_to_head_dim(hidden_states) | ||
| 67 | |||
| 68 | # linear proj | ||
| 69 | hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states) | ||
| 70 | # dropout | ||
| 71 | hidden_states = attn.to_out[1](hidden_states) | ||
| 72 | |||
| 73 | return hidden_states | ||
| 74 | |||
| 75 | |||
| 76 | class LoRAXFormersCrossAttnProcessor(nn.Module): | ||
| 77 | def __init__(self, hidden_size, cross_attention_dim, rank=4): | ||
| 78 | super().__init__() | ||
| 79 | |||
| 80 | self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size) | ||
| 81 | self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size) | ||
| 82 | self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size) | ||
| 83 | self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size) | ||
| 84 | |||
| 85 | def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0): | ||
| 86 | batch_size, sequence_length, _ = hidden_states.shape | ||
| 87 | attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length) | ||
| 88 | |||
| 89 | query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states) | ||
| 90 | query = attn.head_to_batch_dim(query).contiguous() | ||
| 91 | |||
| 92 | encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | ||
| 93 | |||
| 94 | key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states) | ||
| 95 | value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states) | ||
| 96 | |||
| 97 | key = attn.head_to_batch_dim(key).contiguous() | ||
| 98 | value = attn.head_to_batch_dim(value).contiguous() | ||
| 99 | |||
| 100 | hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | ||
| 101 | |||
| 102 | # linear proj | ||
| 103 | hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states) | ||
| 104 | # dropout | ||
| 105 | hidden_states = attn.to_out[1](hidden_states) | ||
| 106 | |||
| 107 | return hidden_states | ||
diff --git a/training/util.py b/training/util.py index 781cf04..a292edd 100644 --- a/training/util.py +++ b/training/util.py | |||
| @@ -1,12 +1,40 @@ | |||
| 1 | from pathlib import Path | 1 | from pathlib import Path |
| 2 | import json | 2 | import json |
| 3 | import copy | 3 | import copy |
| 4 | import itertools | 4 | from typing import Iterable, Union |
| 5 | from typing import Iterable, Optional | ||
| 6 | from contextlib import contextmanager | 5 | from contextlib import contextmanager |
| 7 | 6 | ||
| 8 | import torch | 7 | import torch |
| 9 | from PIL import Image | 8 | |
| 9 | from transformers import CLIPTextModel | ||
| 10 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler | ||
| 11 | |||
| 12 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 13 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 14 | from models.clip.embeddings import ManagedCLIPTextEmbeddings, patch_managed_embeddings | ||
| 15 | |||
| 16 | |||
| 17 | class TrainingStrategy(): | ||
| 18 | @property | ||
| 19 | def main_model(self) -> torch.nn.Module: | ||
| 20 | ... | ||
| 21 | |||
| 22 | @contextmanager | ||
| 23 | def on_train(self, epoch: int): | ||
| 24 | yield | ||
| 25 | |||
| 26 | @contextmanager | ||
| 27 | def on_eval(self): | ||
| 28 | yield | ||
| 29 | |||
| 30 | def on_before_optimize(self, epoch: int): | ||
| 31 | ... | ||
| 32 | |||
| 33 | def on_after_optimize(self, lr: float): | ||
| 34 | ... | ||
| 35 | |||
| 36 | def on_log(): | ||
| 37 | return {} | ||
| 10 | 38 | ||
| 11 | 39 | ||
| 12 | def save_args(basepath: Path, args, extra={}): | 40 | def save_args(basepath: Path, args, extra={}): |
| @@ -16,113 +44,107 @@ def save_args(basepath: Path, args, extra={}): | |||
| 16 | json.dump(info, f, indent=4) | 44 | json.dump(info, f, indent=4) |
| 17 | 45 | ||
| 18 | 46 | ||
| 19 | def make_grid(images, rows, cols): | 47 | def generate_class_images( |
| 20 | w, h = images[0].size | 48 | accelerator, |
| 21 | grid = Image.new('RGB', size=(cols*w, rows*h)) | 49 | text_encoder, |
| 22 | for i, image in enumerate(images): | 50 | vae, |
| 23 | grid.paste(image, box=(i % cols*w, i//cols*h)) | 51 | unet, |
| 24 | return grid | 52 | tokenizer, |
| 53 | scheduler, | ||
| 54 | data_train, | ||
| 55 | sample_batch_size, | ||
| 56 | sample_image_size, | ||
| 57 | sample_steps | ||
| 58 | ): | ||
| 59 | missing_data = [item for item in data_train if not item.class_image_path.exists()] | ||
| 25 | 60 | ||
| 61 | if len(missing_data) == 0: | ||
| 62 | return | ||
| 26 | 63 | ||
| 27 | class AverageMeter: | 64 | batched_data = [ |
| 28 | def __init__(self, name=None): | 65 | missing_data[i:i+sample_batch_size] |
| 29 | self.name = name | 66 | for i in range(0, len(missing_data), sample_batch_size) |
| 30 | self.reset() | 67 | ] |
| 31 | 68 | ||
| 32 | def reset(self): | 69 | pipeline = VlpnStableDiffusion( |
| 33 | self.sum = self.count = self.avg = 0 | 70 | text_encoder=text_encoder, |
| 71 | vae=vae, | ||
| 72 | unet=unet, | ||
| 73 | tokenizer=tokenizer, | ||
| 74 | scheduler=scheduler, | ||
| 75 | ).to(accelerator.device) | ||
| 76 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 34 | 77 | ||
| 35 | def update(self, val, n=1): | 78 | with torch.inference_mode(): |
| 36 | self.sum += val * n | 79 | for batch in batched_data: |
| 37 | self.count += n | 80 | image_name = [item.class_image_path for item in batch] |
| 38 | self.avg = self.sum / self.count | 81 | prompt = [item.cprompt for item in batch] |
| 82 | nprompt = [item.nprompt for item in batch] | ||
| 39 | 83 | ||
| 84 | images = pipeline( | ||
| 85 | prompt=prompt, | ||
| 86 | negative_prompt=nprompt, | ||
| 87 | height=sample_image_size, | ||
| 88 | width=sample_image_size, | ||
| 89 | num_inference_steps=sample_steps | ||
| 90 | ).images | ||
| 40 | 91 | ||
| 41 | class CheckpointerBase: | 92 | for i, image in enumerate(images): |
| 42 | def __init__( | 93 | image.save(image_name[i]) |
| 43 | self, | ||
| 44 | train_dataloader, | ||
| 45 | val_dataloader, | ||
| 46 | output_dir: Path, | ||
| 47 | sample_steps: int = 20, | ||
| 48 | sample_guidance_scale: float = 7.5, | ||
| 49 | sample_image_size: int = 768, | ||
| 50 | sample_batches: int = 1, | ||
| 51 | sample_batch_size: int = 1, | ||
| 52 | seed: Optional[int] = None | ||
| 53 | ): | ||
| 54 | self.train_dataloader = train_dataloader | ||
| 55 | self.val_dataloader = val_dataloader | ||
| 56 | self.output_dir = output_dir | ||
| 57 | self.sample_image_size = sample_image_size | ||
| 58 | self.sample_steps = sample_steps | ||
| 59 | self.sample_guidance_scale = sample_guidance_scale | ||
| 60 | self.sample_batches = sample_batches | ||
| 61 | self.sample_batch_size = sample_batch_size | ||
| 62 | self.seed = seed if seed is not None else torch.random.seed() | ||
| 63 | 94 | ||
| 64 | @torch.no_grad() | 95 | del pipeline |
| 65 | def checkpoint(self, step: int, postfix: str): | ||
| 66 | pass | ||
| 67 | 96 | ||
| 68 | @torch.inference_mode() | 97 | if torch.cuda.is_available(): |
| 69 | def save_samples(self, pipeline, step: int): | 98 | torch.cuda.empty_cache() |
| 70 | samples_path = Path(self.output_dir).joinpath("samples") | ||
| 71 | 99 | ||
| 72 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) | ||
| 73 | 100 | ||
| 74 | grid_cols = min(self.sample_batch_size, 4) | 101 | def get_models(pretrained_model_name_or_path: str): |
| 75 | grid_rows = (self.sample_batches * self.sample_batch_size) // grid_cols | 102 | tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer') |
| 103 | text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') | ||
| 104 | vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae') | ||
| 105 | unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet') | ||
| 106 | noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler') | ||
| 107 | sample_scheduler = DPMSolverMultistepScheduler.from_pretrained( | ||
| 108 | pretrained_model_name_or_path, subfolder='scheduler') | ||
| 76 | 109 | ||
| 77 | for pool, data, gen in [ | 110 | embeddings = patch_managed_embeddings(text_encoder) |
| 78 | ("stable", self.val_dataloader, generator), | ||
| 79 | ("val", self.val_dataloader, None), | ||
| 80 | ("train", self.train_dataloader, None) | ||
| 81 | ]: | ||
| 82 | all_samples = [] | ||
| 83 | file_path = samples_path.joinpath(pool, f"step_{step}.jpg") | ||
| 84 | file_path.parent.mkdir(parents=True, exist_ok=True) | ||
| 85 | 111 | ||
| 86 | batches = list(itertools.islice(itertools.cycle(data), self.sample_batch_size * self.sample_batches)) | 112 | return tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings |
| 87 | prompt_ids = [ | ||
| 88 | prompt | ||
| 89 | for batch in batches | ||
| 90 | for prompt in batch["prompt_ids"] | ||
| 91 | ] | ||
| 92 | nprompt_ids = [ | ||
| 93 | prompt | ||
| 94 | for batch in batches | ||
| 95 | for prompt in batch["nprompt_ids"] | ||
| 96 | ] | ||
| 97 | 113 | ||
| 98 | for i in range(self.sample_batches): | ||
| 99 | start = i * self.sample_batch_size | ||
| 100 | end = (i + 1) * self.sample_batch_size | ||
| 101 | prompt = prompt_ids[start:end] | ||
| 102 | nprompt = nprompt_ids[start:end] | ||
| 103 | 114 | ||
| 104 | samples = pipeline( | 115 | def add_placeholder_tokens( |
| 105 | prompt=prompt, | 116 | tokenizer: MultiCLIPTokenizer, |
| 106 | negative_prompt=nprompt, | 117 | embeddings: ManagedCLIPTextEmbeddings, |
| 107 | height=self.sample_image_size, | 118 | placeholder_tokens: list[str], |
| 108 | width=self.sample_image_size, | 119 | initializer_tokens: list[str], |
| 109 | generator=gen, | 120 | num_vectors: Union[list[int], int] |
| 110 | guidance_scale=self.sample_guidance_scale, | 121 | ): |
| 111 | num_inference_steps=self.sample_steps, | 122 | initializer_token_ids = [ |
| 112 | output_type='pil' | 123 | tokenizer.encode(token, add_special_tokens=False) |
| 113 | ).images | 124 | for token in initializer_tokens |
| 125 | ] | ||
| 126 | placeholder_token_ids = tokenizer.add_multi_tokens(placeholder_tokens, num_vectors) | ||
| 114 | 127 | ||
| 115 | all_samples += samples | 128 | embeddings.resize(len(tokenizer)) |
| 116 | 129 | ||
| 117 | del samples | 130 | for (placeholder_token_id, initializer_token_id) in zip(placeholder_token_ids, initializer_token_ids): |
| 131 | embeddings.add_embed(placeholder_token_id, initializer_token_id) | ||
| 118 | 132 | ||
| 119 | image_grid = make_grid(all_samples, grid_rows, grid_cols) | 133 | return placeholder_token_ids, initializer_token_ids |
| 120 | image_grid.save(file_path, quality=85) | ||
| 121 | 134 | ||
| 122 | del all_samples | ||
| 123 | del image_grid | ||
| 124 | 135 | ||
| 125 | del generator | 136 | class AverageMeter: |
| 137 | def __init__(self, name=None): | ||
| 138 | self.name = name | ||
| 139 | self.reset() | ||
| 140 | |||
| 141 | def reset(self): | ||
| 142 | self.sum = self.count = self.avg = 0 | ||
| 143 | |||
| 144 | def update(self, val, n=1): | ||
| 145 | self.sum += val * n | ||
| 146 | self.count += n | ||
| 147 | self.avg = self.sum / self.count | ||
| 126 | 148 | ||
| 127 | 149 | ||
| 128 | # Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14 | 150 | # Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14 |
