diff options
-rw-r--r-- | infer.py | 1 | ||||
-rw-r--r-- | models/clip/embeddings.py | 7 | ||||
-rw-r--r-- | models/sparse.py | 13 | ||||
-rw-r--r-- | train_dreambooth.py | 1 | ||||
-rw-r--r-- | train_lora.py | 140 | ||||
-rw-r--r-- | train_ti.py | 66 | ||||
-rw-r--r-- | training/functional.py | 4 |
7 files changed, 72 insertions, 160 deletions
@@ -235,6 +235,7 @@ def load_embeddings(pipeline, embeddings_dir): | |||
235 | pipeline.text_encoder.text_model.embeddings, | 235 | pipeline.text_encoder.text_model.embeddings, |
236 | Path(embeddings_dir) | 236 | Path(embeddings_dir) |
237 | ) | 237 | ) |
238 | pipeline.text_encoder.text_model.embeddings.persist() | ||
238 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | 239 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") |
239 | 240 | ||
240 | 241 | ||
diff --git a/models/clip/embeddings.py b/models/clip/embeddings.py index 6fda33c..dc4708a 100644 --- a/models/clip/embeddings.py +++ b/models/clip/embeddings.py | |||
@@ -37,7 +37,7 @@ def resize_embedding(old_embedding: nn.Embedding, new_num_embeddings: int, initi | |||
37 | 37 | ||
38 | 38 | ||
39 | class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | 39 | class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): |
40 | def __init__(self, config: CLIPTextConfig, embeddings: CLIPTextEmbeddings): | 40 | def __init__(self, config: CLIPTextConfig, embeddings: CLIPTextEmbeddings, dropout_p: float = 0.0): |
41 | super().__init__(config) | 41 | super().__init__(config) |
42 | 42 | ||
43 | self.token_embedding = embeddings.token_embedding | 43 | self.token_embedding = embeddings.token_embedding |
@@ -46,6 +46,7 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
46 | 46 | ||
47 | self.token_override_embedding = PseudoSparseEmbedding( | 47 | self.token_override_embedding = PseudoSparseEmbedding( |
48 | self.token_embedding.embedding_dim, | 48 | self.token_embedding.embedding_dim, |
49 | dropout_p=dropout_p, | ||
49 | device=self.token_embedding.weight.device, | 50 | device=self.token_embedding.weight.device, |
50 | dtype=self.token_embedding.weight.dtype, | 51 | dtype=self.token_embedding.weight.dtype, |
51 | ) | 52 | ) |
@@ -134,7 +135,7 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
134 | return embeddings | 135 | return embeddings |
135 | 136 | ||
136 | 137 | ||
137 | def patch_managed_embeddings(text_encoder: CLIPTextModel) -> ManagedCLIPTextEmbeddings: | 138 | def patch_managed_embeddings(text_encoder: CLIPTextModel, dropout_p: float = 0.0) -> ManagedCLIPTextEmbeddings: |
138 | text_embeddings = ManagedCLIPTextEmbeddings(text_encoder.config, text_encoder.text_model.embeddings) | 139 | text_embeddings = ManagedCLIPTextEmbeddings(text_encoder.config, text_encoder.text_model.embeddings, dropout_p) |
139 | text_encoder.text_model.embeddings = text_embeddings | 140 | text_encoder.text_model.embeddings = text_embeddings |
140 | return text_embeddings | 141 | return text_embeddings |
diff --git a/models/sparse.py b/models/sparse.py index d706db5..bcb2897 100644 --- a/models/sparse.py +++ b/models/sparse.py | |||
@@ -5,22 +5,29 @@ import torch.nn as nn | |||
5 | 5 | ||
6 | 6 | ||
7 | class PseudoSparseEmbedding(nn.Module): | 7 | class PseudoSparseEmbedding(nn.Module): |
8 | def __init__(self, embedding_dim: int, device=None, dtype=torch.float32): | 8 | def __init__(self, embedding_dim: int, dropout_p: float = 0.0, device=None, dtype=torch.float32): |
9 | super().__init__() | 9 | super().__init__() |
10 | 10 | ||
11 | self.embedding_dim = embedding_dim | 11 | self.embedding_dim = embedding_dim |
12 | self.dtype = dtype | 12 | self.dtype = dtype |
13 | self.params = nn.ParameterList() | 13 | self.params = nn.ParameterList() |
14 | |||
15 | if dropout_p > 0.0: | ||
16 | self.dropout = nn.Dropout(p=dropout_p) | ||
17 | else: | ||
18 | self.dropout = lambda x: x | ||
19 | |||
14 | self.register_buffer('mapping', torch.zeros(0, device=device, dtype=torch.long)) | 20 | self.register_buffer('mapping', torch.zeros(0, device=device, dtype=torch.long)) |
15 | 21 | ||
16 | def forward(self, input_ids: torch.LongTensor): | 22 | def forward(self, input_ids: torch.LongTensor): |
17 | ids = self.mapping[input_ids.to(self.mapping.device)] | 23 | input_ids = input_ids.to(self.mapping.device) |
24 | ids = self.mapping[input_ids] | ||
18 | mask = ~(ids == -1) | 25 | mask = ~(ids == -1) |
19 | 26 | ||
20 | if torch.all(~mask): | 27 | if torch.all(~mask): |
21 | embs = None | 28 | embs = None |
22 | else: | 29 | else: |
23 | embs = torch.stack([self.params[id] for id in ids[mask]]) | 30 | embs = self.dropout(torch.stack([self.params[id] for id in ids[mask]])) |
24 | 31 | ||
25 | return embs, mask | 32 | return embs, mask |
26 | 33 | ||
diff --git a/train_dreambooth.py b/train_dreambooth.py index f4d4cbb..2aca1e7 100644 --- a/train_dreambooth.py +++ b/train_dreambooth.py | |||
@@ -513,6 +513,7 @@ def main(): | |||
513 | raise ValueError("--embeddings_dir must point to an existing directory") | 513 | raise ValueError("--embeddings_dir must point to an existing directory") |
514 | 514 | ||
515 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | 515 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) |
516 | embeddings.persist() | ||
516 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | 517 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") |
517 | 518 | ||
518 | if args.scale_lr: | 519 | if args.scale_lr: |
diff --git a/train_lora.py b/train_lora.py index 8dbe45b..6e21634 100644 --- a/train_lora.py +++ b/train_lora.py | |||
@@ -159,12 +159,6 @@ def parse_args(): | |||
159 | help="Tag dropout probability.", | 159 | help="Tag dropout probability.", |
160 | ) | 160 | ) |
161 | parser.add_argument( | 161 | parser.add_argument( |
162 | "--pti_tag_dropout", | ||
163 | type=float, | ||
164 | default=0, | ||
165 | help="Tag dropout probability.", | ||
166 | ) | ||
167 | parser.add_argument( | ||
168 | "--no_tag_shuffle", | 162 | "--no_tag_shuffle", |
169 | action="store_true", | 163 | action="store_true", |
170 | help="Shuffle tags.", | 164 | help="Shuffle tags.", |
@@ -236,28 +230,12 @@ def parse_args(): | |||
236 | default=2000 | 230 | default=2000 |
237 | ) | 231 | ) |
238 | parser.add_argument( | 232 | parser.add_argument( |
239 | "--num_pti_epochs", | ||
240 | type=int, | ||
241 | default=None | ||
242 | ) | ||
243 | parser.add_argument( | ||
244 | "--num_pti_steps", | ||
245 | type=int, | ||
246 | default=500 | ||
247 | ) | ||
248 | parser.add_argument( | ||
249 | "--gradient_accumulation_steps", | 233 | "--gradient_accumulation_steps", |
250 | type=int, | 234 | type=int, |
251 | default=1, | 235 | default=1, |
252 | help="Number of updates steps to accumulate before performing a backward/update pass.", | 236 | help="Number of updates steps to accumulate before performing a backward/update pass.", |
253 | ) | 237 | ) |
254 | parser.add_argument( | 238 | parser.add_argument( |
255 | "--pti_gradient_accumulation_steps", | ||
256 | type=int, | ||
257 | default=1, | ||
258 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
259 | ) | ||
260 | parser.add_argument( | ||
261 | "--lora_r", | 239 | "--lora_r", |
262 | type=int, | 240 | type=int, |
263 | default=8, | 241 | default=8, |
@@ -323,12 +301,6 @@ def parse_args(): | |||
323 | help="Initial learning rate (after the potential warmup period) to use.", | 301 | help="Initial learning rate (after the potential warmup period) to use.", |
324 | ) | 302 | ) |
325 | parser.add_argument( | 303 | parser.add_argument( |
326 | "--learning_rate_pti", | ||
327 | type=float, | ||
328 | default=1e-4, | ||
329 | help="Initial learning rate (after the potential warmup period) to use.", | ||
330 | ) | ||
331 | parser.add_argument( | ||
332 | "--learning_rate_emb", | 304 | "--learning_rate_emb", |
333 | type=float, | 305 | type=float, |
334 | default=1e-5, | 306 | default=1e-5, |
@@ -467,12 +439,6 @@ def parse_args(): | |||
467 | help="How often to save a checkpoint and sample image", | 439 | help="How often to save a checkpoint and sample image", |
468 | ) | 440 | ) |
469 | parser.add_argument( | 441 | parser.add_argument( |
470 | "--pti_sample_frequency", | ||
471 | type=int, | ||
472 | default=1, | ||
473 | help="How often to save a checkpoint and sample image", | ||
474 | ) | ||
475 | parser.add_argument( | ||
476 | "--sample_image_size", | 442 | "--sample_image_size", |
477 | type=int, | 443 | type=int, |
478 | default=768, | 444 | default=768, |
@@ -509,12 +475,6 @@ def parse_args(): | |||
509 | help="Batch size (per device) for the training dataloader." | 475 | help="Batch size (per device) for the training dataloader." |
510 | ) | 476 | ) |
511 | parser.add_argument( | 477 | parser.add_argument( |
512 | "--pti_batch_size", | ||
513 | type=int, | ||
514 | default=1, | ||
515 | help="Batch size (per device) for the training dataloader." | ||
516 | ) | ||
517 | parser.add_argument( | ||
518 | "--sample_steps", | 478 | "--sample_steps", |
519 | type=int, | 479 | type=int, |
520 | default=10, | 480 | default=10, |
@@ -527,6 +487,12 @@ def parse_args(): | |||
527 | help="The weight of prior preservation loss." | 487 | help="The weight of prior preservation loss." |
528 | ) | 488 | ) |
529 | parser.add_argument( | 489 | parser.add_argument( |
490 | "--emb_dropout", | ||
491 | type=float, | ||
492 | default=0, | ||
493 | help="Embedding dropout probability.", | ||
494 | ) | ||
495 | parser.add_argument( | ||
530 | "--use_emb_decay", | 496 | "--use_emb_decay", |
531 | action="store_true", | 497 | action="store_true", |
532 | help="Whether to use embedding decay." | 498 | help="Whether to use embedding decay." |
@@ -674,7 +640,7 @@ def main(): | |||
674 | save_args(output_dir, args) | 640 | save_args(output_dir, args) |
675 | 641 | ||
676 | tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings = get_models( | 642 | tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings = get_models( |
677 | args.pretrained_model_name_or_path) | 643 | args.pretrained_model_name_or_path, args.emb_dropout) |
678 | 644 | ||
679 | unet_config = LoraConfig( | 645 | unet_config = LoraConfig( |
680 | r=args.lora_r, | 646 | r=args.lora_r, |
@@ -720,6 +686,7 @@ def main(): | |||
720 | raise ValueError("--embeddings_dir must point to an existing directory") | 686 | raise ValueError("--embeddings_dir must point to an existing directory") |
721 | 687 | ||
722 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | 688 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) |
689 | embeddings.persist() | ||
723 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | 690 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") |
724 | 691 | ||
725 | placeholder_token_ids, initializer_token_ids = add_placeholder_tokens( | 692 | placeholder_token_ids, initializer_token_ids = add_placeholder_tokens( |
@@ -744,19 +711,14 @@ def main(): | |||
744 | args.learning_rate_text * args.gradient_accumulation_steps * | 711 | args.learning_rate_text * args.gradient_accumulation_steps * |
745 | args.train_batch_size * accelerator.num_processes | 712 | args.train_batch_size * accelerator.num_processes |
746 | ) | 713 | ) |
747 | args.learning_rate_pti = ( | ||
748 | args.learning_rate_pti * args.pti_gradient_accumulation_steps * | ||
749 | args.pti_batch_size * accelerator.num_processes | ||
750 | ) | ||
751 | args.learning_rate_emb = ( | 714 | args.learning_rate_emb = ( |
752 | args.learning_rate_emb * args.pti_gradient_accumulation_steps * | 715 | args.learning_rate_emb * args.gradient_accumulation_steps * |
753 | args.pti_batch_size * accelerator.num_processes | 716 | args.train_batch_size * accelerator.num_processes |
754 | ) | 717 | ) |
755 | 718 | ||
756 | if args.find_lr: | 719 | if args.find_lr: |
757 | args.learning_rate_unet = 1e-6 | 720 | args.learning_rate_unet = 1e-6 |
758 | args.learning_rate_text = 1e-6 | 721 | args.learning_rate_text = 1e-6 |
759 | args.learning_rate_pti = 1e-6 | ||
760 | args.learning_rate_emb = 1e-6 | 722 | args.learning_rate_emb = 1e-6 |
761 | args.lr_scheduler = "exponential_growth" | 723 | args.lr_scheduler = "exponential_growth" |
762 | 724 | ||
@@ -817,7 +779,6 @@ def main(): | |||
817 | args.lr_min_lr = args.learning_rate_unet | 779 | args.lr_min_lr = args.learning_rate_unet |
818 | args.learning_rate_unet = None | 780 | args.learning_rate_unet = None |
819 | args.learning_rate_text = None | 781 | args.learning_rate_text = None |
820 | args.learning_rate_pti = None | ||
821 | args.learning_rate_emb = None | 782 | args.learning_rate_emb = None |
822 | elif args.optimizer == 'dadam': | 783 | elif args.optimizer == 'dadam': |
823 | try: | 784 | try: |
@@ -836,7 +797,6 @@ def main(): | |||
836 | 797 | ||
837 | args.learning_rate_unet = 1.0 | 798 | args.learning_rate_unet = 1.0 |
838 | args.learning_rate_text = 1.0 | 799 | args.learning_rate_text = 1.0 |
839 | args.learning_rate_pti = 1.0 | ||
840 | args.learning_rate_emb = 1.0 | 800 | args.learning_rate_emb = 1.0 |
841 | elif args.optimizer == 'dadan': | 801 | elif args.optimizer == 'dadan': |
842 | try: | 802 | try: |
@@ -853,7 +813,6 @@ def main(): | |||
853 | 813 | ||
854 | args.learning_rate_unet = 1.0 | 814 | args.learning_rate_unet = 1.0 |
855 | args.learning_rate_text = 1.0 | 815 | args.learning_rate_text = 1.0 |
856 | args.learning_rate_pti = 1.0 | ||
857 | args.learning_rate_emb = 1.0 | 816 | args.learning_rate_emb = 1.0 |
858 | else: | 817 | else: |
859 | raise ValueError(f"Unknown --optimizer \"{args.optimizer}\"") | 818 | raise ValueError(f"Unknown --optimizer \"{args.optimizer}\"") |
@@ -920,80 +879,6 @@ def main(): | |||
920 | mid_point=args.lr_mid_point, | 879 | mid_point=args.lr_mid_point, |
921 | ) | 880 | ) |
922 | 881 | ||
923 | # PTI | ||
924 | # -------------------------------------------------------------------------------- | ||
925 | |||
926 | if len(args.placeholder_tokens) != 0: | ||
927 | pti_datamodule = create_datamodule( | ||
928 | batch_size=args.pti_batch_size, | ||
929 | dropout=args.pti_tag_dropout, | ||
930 | filter=partial(keyword_filter, args.filter_tokens, args.collection, args.exclude_collections), | ||
931 | ) | ||
932 | pti_datamodule.setup() | ||
933 | |||
934 | num_pti_epochs = args.num_pti_epochs | ||
935 | pti_sample_frequency = args.pti_sample_frequency | ||
936 | if num_pti_epochs is None: | ||
937 | num_pti_epochs = math.ceil( | ||
938 | args.num_pti_steps / len(pti_datamodule.train_dataset) | ||
939 | ) * args.pti_gradient_accumulation_steps | ||
940 | pti_sample_frequency = math.ceil(num_pti_epochs * (pti_sample_frequency / args.num_pti_steps)) | ||
941 | |||
942 | if num_pti_epochs > 0: | ||
943 | pti_optimizer = create_optimizer( | ||
944 | [ | ||
945 | { | ||
946 | "params": text_encoder.text_model.embeddings.token_override_embedding.parameters(), | ||
947 | "lr": args.learning_rate_pti, | ||
948 | "weight_decay": 0, | ||
949 | }, | ||
950 | ] | ||
951 | ) | ||
952 | |||
953 | pti_lr_scheduler = create_lr_scheduler( | ||
954 | gradient_accumulation_steps=args.pti_gradient_accumulation_steps, | ||
955 | optimizer=pti_optimizer, | ||
956 | num_training_steps_per_epoch=len(pti_datamodule.train_dataloader), | ||
957 | train_epochs=num_pti_epochs, | ||
958 | ) | ||
959 | |||
960 | continue_training = True | ||
961 | training_iter = 1 | ||
962 | |||
963 | while continue_training: | ||
964 | print("") | ||
965 | print(f"============ PTI cycle {training_iter} ============") | ||
966 | print("") | ||
967 | |||
968 | pti_project = f"pti_{training_iter}" | ||
969 | pti_output_dir = output_dir / pti_project | ||
970 | pti_checkpoint_output_dir = pti_output_dir / "model" | ||
971 | pti_sample_output_dir = pti_output_dir / "samples" | ||
972 | |||
973 | trainer( | ||
974 | strategy=lora_strategy, | ||
975 | pti_mode=True, | ||
976 | project=pti_project, | ||
977 | train_dataloader=pti_datamodule.train_dataloader, | ||
978 | val_dataloader=pti_datamodule.val_dataloader, | ||
979 | optimizer=pti_optimizer, | ||
980 | lr_scheduler=pti_lr_scheduler, | ||
981 | num_train_epochs=num_pti_epochs, | ||
982 | gradient_accumulation_steps=args.pti_gradient_accumulation_steps, | ||
983 | # -- | ||
984 | group_labels=["emb"], | ||
985 | sample_output_dir=pti_sample_output_dir, | ||
986 | checkpoint_output_dir=pti_checkpoint_output_dir, | ||
987 | sample_frequency=pti_sample_frequency, | ||
988 | ) | ||
989 | |||
990 | response = input("Run another cycle? [y/n] ") | ||
991 | continue_training = response.lower().strip() != "n" | ||
992 | training_iter += 1 | ||
993 | |||
994 | if not args.train_emb: | ||
995 | embeddings.persist() | ||
996 | |||
997 | # LORA | 882 | # LORA |
998 | # -------------------------------------------------------------------------------- | 883 | # -------------------------------------------------------------------------------- |
999 | 884 | ||
@@ -1062,9 +947,8 @@ def main(): | |||
1062 | print("") | 947 | print("") |
1063 | 948 | ||
1064 | lora_project = f"lora_{training_iter}" | 949 | lora_project = f"lora_{training_iter}" |
1065 | lora_output_dir = output_dir / lora_project | 950 | lora_checkpoint_output_dir = output_dir / lora_project / "model" |
1066 | lora_checkpoint_output_dir = lora_output_dir / "model" | 951 | lora_sample_output_dir = output_dir / lora_project / "samples" |
1067 | lora_sample_output_dir = lora_output_dir / "samples" | ||
1068 | 952 | ||
1069 | trainer( | 953 | trainer( |
1070 | strategy=lora_strategy, | 954 | strategy=lora_strategy, |
diff --git a/train_ti.py b/train_ti.py index daf8bc5..2d51800 100644 --- a/train_ti.py +++ b/train_ti.py | |||
@@ -458,6 +458,12 @@ def parse_args(): | |||
458 | help="The weight of prior preservation loss." | 458 | help="The weight of prior preservation loss." |
459 | ) | 459 | ) |
460 | parser.add_argument( | 460 | parser.add_argument( |
461 | "--emb_dropout", | ||
462 | type=float, | ||
463 | default=0, | ||
464 | help="Embedding dropout probability.", | ||
465 | ) | ||
466 | parser.add_argument( | ||
461 | "--use_emb_decay", | 467 | "--use_emb_decay", |
462 | action="store_true", | 468 | action="store_true", |
463 | help="Whether to use embedding decay." | 469 | help="Whether to use embedding decay." |
@@ -624,7 +630,7 @@ def main(): | |||
624 | save_args(output_dir, args) | 630 | save_args(output_dir, args) |
625 | 631 | ||
626 | tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings = get_models( | 632 | tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings = get_models( |
627 | args.pretrained_model_name_or_path) | 633 | args.pretrained_model_name_or_path, args.emb_dropout) |
628 | 634 | ||
629 | tokenizer.set_use_vector_shuffle(args.vector_shuffle) | 635 | tokenizer.set_use_vector_shuffle(args.vector_shuffle) |
630 | tokenizer.set_dropout(args.vector_dropout) | 636 | tokenizer.set_dropout(args.vector_dropout) |
@@ -755,8 +761,6 @@ def main(): | |||
755 | else: | 761 | else: |
756 | raise ValueError(f"Unknown --optimizer \"{args.optimizer}\"") | 762 | raise ValueError(f"Unknown --optimizer \"{args.optimizer}\"") |
757 | 763 | ||
758 | checkpoint_output_dir = output_dir / "checkpoints" | ||
759 | |||
760 | trainer = partial( | 764 | trainer = partial( |
761 | train, | 765 | train, |
762 | accelerator=accelerator, | 766 | accelerator=accelerator, |
@@ -777,7 +781,6 @@ def main(): | |||
777 | global_step_offset=global_step_offset, | 781 | global_step_offset=global_step_offset, |
778 | offset_noise_strength=args.offset_noise_strength, | 782 | offset_noise_strength=args.offset_noise_strength, |
779 | # -- | 783 | # -- |
780 | checkpoint_output_dir=checkpoint_output_dir, | ||
781 | use_emb_decay=args.use_emb_decay, | 784 | use_emb_decay=args.use_emb_decay, |
782 | emb_decay_target=args.emb_decay_target, | 785 | emb_decay_target=args.emb_decay_target, |
783 | emb_decay=args.emb_decay, | 786 | emb_decay=args.emb_decay, |
@@ -793,11 +796,6 @@ def main(): | |||
793 | ) | 796 | ) |
794 | 797 | ||
795 | def run(i: int, placeholder_tokens: list[str], initializer_tokens: list[str], num_vectors: Union[int, list[int]], data_template: str): | 798 | def run(i: int, placeholder_tokens: list[str], initializer_tokens: list[str], num_vectors: Union[int, list[int]], data_template: str): |
796 | if len(placeholder_tokens) == 1: | ||
797 | sample_output_dir = output_dir / f"samples_{placeholder_tokens[0]}" | ||
798 | else: | ||
799 | sample_output_dir = output_dir / "samples" | ||
800 | |||
801 | placeholder_token_ids, initializer_token_ids = add_placeholder_tokens( | 799 | placeholder_token_ids, initializer_token_ids = add_placeholder_tokens( |
802 | tokenizer=tokenizer, | 800 | tokenizer=tokenizer, |
803 | embeddings=embeddings, | 801 | embeddings=embeddings, |
@@ -809,7 +807,11 @@ def main(): | |||
809 | 807 | ||
810 | stats = list(zip(placeholder_tokens, placeholder_token_ids, initializer_tokens, initializer_token_ids)) | 808 | stats = list(zip(placeholder_tokens, placeholder_token_ids, initializer_tokens, initializer_token_ids)) |
811 | 809 | ||
812 | print(f"{i + 1}: {stats}") | 810 | print("") |
811 | print(f"============ TI batch {i + 1} ============") | ||
812 | print("") | ||
813 | print(stats) | ||
814 | print("") | ||
813 | 815 | ||
814 | filter_tokens = [token for token in args.filter_tokens if token in placeholder_tokens] | 816 | filter_tokens = [token for token in args.filter_tokens if token in placeholder_tokens] |
815 | 817 | ||
@@ -868,20 +870,36 @@ def main(): | |||
868 | mid_point=args.lr_mid_point, | 870 | mid_point=args.lr_mid_point, |
869 | ) | 871 | ) |
870 | 872 | ||
871 | trainer( | 873 | continue_training = True |
872 | project="textual_inversion", | 874 | training_iter = 1 |
873 | train_dataloader=datamodule.train_dataloader, | 875 | |
874 | val_dataloader=datamodule.val_dataloader, | 876 | while continue_training: |
875 | optimizer=optimizer, | 877 | print(f"------------ TI cycle {training_iter} ------------") |
876 | lr_scheduler=lr_scheduler, | 878 | print("") |
877 | num_train_epochs=num_train_epochs, | 879 | |
878 | # -- | 880 | project = f"{placeholder_tokens[0]}_{training_iter}" if len(placeholder_tokens) == 1 else f"{training_iter}" |
879 | group_labels=["emb"], | 881 | sample_output_dir = output_dir / project / "samples" |
880 | sample_output_dir=sample_output_dir, | 882 | checkpoint_output_dir = output_dir / project / "checkpoints" |
881 | sample_frequency=sample_frequency, | 883 | |
882 | placeholder_tokens=placeholder_tokens, | 884 | trainer( |
883 | placeholder_token_ids=placeholder_token_ids, | 885 | project=project, |
884 | ) | 886 | train_dataloader=datamodule.train_dataloader, |
887 | val_dataloader=datamodule.val_dataloader, | ||
888 | optimizer=optimizer, | ||
889 | lr_scheduler=lr_scheduler, | ||
890 | num_train_epochs=num_train_epochs, | ||
891 | # -- | ||
892 | group_labels=["emb"], | ||
893 | checkpoint_output_dir=checkpoint_output_dir, | ||
894 | sample_output_dir=sample_output_dir, | ||
895 | sample_frequency=sample_frequency, | ||
896 | placeholder_tokens=placeholder_tokens, | ||
897 | placeholder_token_ids=placeholder_token_ids, | ||
898 | ) | ||
899 | |||
900 | response = input("Run another cycle? [y/n] ") | ||
901 | continue_training = response.lower().strip() != "n" | ||
902 | training_iter += 1 | ||
885 | 903 | ||
886 | if not args.sequential: | 904 | if not args.sequential: |
887 | run(0, args.placeholder_tokens, args.initializer_tokens, args.num_vectors, args.train_data_template) | 905 | run(0, args.placeholder_tokens, args.initializer_tokens, args.num_vectors, args.train_data_template) |
diff --git a/training/functional.py b/training/functional.py index 7d49782..e14aeea 100644 --- a/training/functional.py +++ b/training/functional.py | |||
@@ -72,7 +72,7 @@ def make_grid(images, rows, cols): | |||
72 | return grid | 72 | return grid |
73 | 73 | ||
74 | 74 | ||
75 | def get_models(pretrained_model_name_or_path: str): | 75 | def get_models(pretrained_model_name_or_path: str, emb_dropout: float = 0.0): |
76 | tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer') | 76 | tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer') |
77 | text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') | 77 | text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') |
78 | vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae') | 78 | vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae') |
@@ -81,7 +81,7 @@ def get_models(pretrained_model_name_or_path: str): | |||
81 | sample_scheduler = UniPCMultistepScheduler.from_pretrained( | 81 | sample_scheduler = UniPCMultistepScheduler.from_pretrained( |
82 | pretrained_model_name_or_path, subfolder='scheduler') | 82 | pretrained_model_name_or_path, subfolder='scheduler') |
83 | 83 | ||
84 | embeddings = patch_managed_embeddings(text_encoder) | 84 | embeddings = patch_managed_embeddings(text_encoder, emb_dropout) |
85 | 85 | ||
86 | return tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings | 86 | return tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings |
87 | 87 | ||