diff options
-rw-r--r-- | data/csv.py | 3 | ||||
-rw-r--r-- | dreambooth.py | 53 | ||||
-rw-r--r-- | environment.yaml | 4 | ||||
-rw-r--r-- | infer.py | 10 | ||||
-rw-r--r-- | pipelines/stable_diffusion/vlpn_stable_diffusion.py | 11 | ||||
-rw-r--r-- | schedulers/scheduling_euler_a.py | 210 | ||||
-rw-r--r-- | textual_inversion.py | 74 |
7 files changed, 142 insertions, 223 deletions
diff --git a/data/csv.py b/data/csv.py index 8637ac1..253ce9e 100644 --- a/data/csv.py +++ b/data/csv.py | |||
@@ -68,13 +68,12 @@ class CSVDataModule(pl.LightningDataModule): | |||
68 | item.nprompt if "nprompt" in item else "" | 68 | item.nprompt if "nprompt" in item else "" |
69 | ) | 69 | ) |
70 | for item in data | 70 | for item in data |
71 | if "skip" not in item or item.skip != "x" | ||
72 | for i in range(image_multiplier) | 71 | for i in range(image_multiplier) |
73 | ] | 72 | ] |
74 | 73 | ||
75 | def prepare_data(self): | 74 | def prepare_data(self): |
76 | metadata = pd.read_csv(self.data_file) | 75 | metadata = pd.read_csv(self.data_file) |
77 | metadata = list(metadata.itertuples()) | 76 | metadata = [item for item in metadata.itertuples() if "skip" not in item or item.skip != "x"] |
78 | num_images = len(metadata) | 77 | num_images = len(metadata) |
79 | 78 | ||
80 | valid_set_size = int(num_images * 0.2) | 79 | valid_set_size = int(num_images * 0.2) |
diff --git a/dreambooth.py b/dreambooth.py index 02f83c6..775aea2 100644 --- a/dreambooth.py +++ b/dreambooth.py | |||
@@ -112,7 +112,7 @@ def parse_args(): | |||
112 | parser.add_argument( | 112 | parser.add_argument( |
113 | "--max_train_steps", | 113 | "--max_train_steps", |
114 | type=int, | 114 | type=int, |
115 | default=5000, | 115 | default=3000, |
116 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | 116 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
117 | ) | 117 | ) |
118 | parser.add_argument( | 118 | parser.add_argument( |
@@ -150,7 +150,7 @@ def parse_args(): | |||
150 | parser.add_argument( | 150 | parser.add_argument( |
151 | "--lr_warmup_steps", | 151 | "--lr_warmup_steps", |
152 | type=int, | 152 | type=int, |
153 | default=600, | 153 | default=500, |
154 | help="Number of steps for the warmup in the lr scheduler." | 154 | help="Number of steps for the warmup in the lr scheduler." |
155 | ) | 155 | ) |
156 | parser.add_argument( | 156 | parser.add_argument( |
@@ -167,7 +167,7 @@ def parse_args(): | |||
167 | parser.add_argument( | 167 | parser.add_argument( |
168 | "--ema_power", | 168 | "--ema_power", |
169 | type=float, | 169 | type=float, |
170 | default=1.0 | 170 | default=7 / 8 |
171 | ) | 171 | ) |
172 | parser.add_argument( | 172 | parser.add_argument( |
173 | "--ema_max_decay", | 173 | "--ema_max_decay", |
@@ -468,20 +468,20 @@ def main(): | |||
468 | if args.tokenizer_name: | 468 | if args.tokenizer_name: |
469 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | 469 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) |
470 | elif args.pretrained_model_name_or_path: | 470 | elif args.pretrained_model_name_or_path: |
471 | tokenizer = CLIPTokenizer.from_pretrained( | 471 | tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') |
472 | args.pretrained_model_name_or_path + '/tokenizer' | ||
473 | ) | ||
474 | 472 | ||
475 | # Load models and create wrapper for stable diffusion | 473 | # Load models and create wrapper for stable diffusion |
476 | text_encoder = CLIPTextModel.from_pretrained( | 474 | text_encoder = CLIPTextModel.from_pretrained( |
477 | args.pretrained_model_name_or_path + '/text_encoder', | 475 | args.pretrained_model_name_or_path, subfolder='text_encoder') |
478 | ) | 476 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') |
479 | vae = AutoencoderKL.from_pretrained( | 477 | unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') |
480 | args.pretrained_model_name_or_path + '/vae', | 478 | |
481 | ) | 479 | ema_unet = EMAModel( |
482 | unet = UNet2DConditionModel.from_pretrained( | 480 | unet, |
483 | args.pretrained_model_name_or_path + '/unet', | 481 | inv_gamma=args.ema_inv_gamma, |
484 | ) | 482 | power=args.ema_power, |
483 | max_value=args.ema_max_decay | ||
484 | ) if args.use_ema else None | ||
485 | 485 | ||
486 | if args.gradient_checkpointing: | 486 | if args.gradient_checkpointing: |
487 | unet.enable_gradient_checkpointing() | 487 | unet.enable_gradient_checkpointing() |
@@ -538,7 +538,7 @@ def main(): | |||
538 | pixel_values += [example["class_images"] for example in examples] | 538 | pixel_values += [example["class_images"] for example in examples] |
539 | 539 | ||
540 | pixel_values = torch.stack(pixel_values) | 540 | pixel_values = torch.stack(pixel_values) |
541 | pixel_values = pixel_values.to(dtype=torch.float32, memory_format=torch.contiguous_format) | 541 | pixel_values = pixel_values.to(memory_format=torch.contiguous_format) |
542 | 542 | ||
543 | input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids | 543 | input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids |
544 | 544 | ||
@@ -629,16 +629,10 @@ def main(): | |||
629 | unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | 629 | unet, optimizer, train_dataloader, val_dataloader, lr_scheduler |
630 | ) | 630 | ) |
631 | 631 | ||
632 | ema_unet = EMAModel( | ||
633 | unet, | ||
634 | inv_gamma=args.ema_inv_gamma, | ||
635 | power=args.ema_power, | ||
636 | max_value=args.ema_max_decay | ||
637 | ) if args.use_ema else None | ||
638 | |||
639 | # Move text_encoder and vae to device | 632 | # Move text_encoder and vae to device |
640 | text_encoder.to(accelerator.device) | 633 | text_encoder.to(accelerator.device) |
641 | vae.to(accelerator.device) | 634 | vae.to(accelerator.device) |
635 | ema_unet.averaged_model.to(accelerator.device) | ||
642 | 636 | ||
643 | # Keep text_encoder and vae in eval mode as we don't train these | 637 | # Keep text_encoder and vae in eval mode as we don't train these |
644 | text_encoder.eval() | 638 | text_encoder.eval() |
@@ -698,7 +692,7 @@ def main(): | |||
698 | disable=not accelerator.is_local_main_process, | 692 | disable=not accelerator.is_local_main_process, |
699 | dynamic_ncols=True | 693 | dynamic_ncols=True |
700 | ) | 694 | ) |
701 | local_progress_bar.set_description("Batch X out of Y") | 695 | local_progress_bar.set_description("Epoch X / Y") |
702 | 696 | ||
703 | global_progress_bar = tqdm( | 697 | global_progress_bar = tqdm( |
704 | range(args.max_train_steps + val_steps), | 698 | range(args.max_train_steps + val_steps), |
@@ -709,7 +703,7 @@ def main(): | |||
709 | 703 | ||
710 | try: | 704 | try: |
711 | for epoch in range(num_epochs): | 705 | for epoch in range(num_epochs): |
712 | local_progress_bar.set_description(f"Batch {epoch + 1} out of {num_epochs}") | 706 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") |
713 | local_progress_bar.reset() | 707 | local_progress_bar.reset() |
714 | 708 | ||
715 | unet.train() | 709 | unet.train() |
@@ -720,9 +714,8 @@ def main(): | |||
720 | for step, batch in enumerate(train_dataloader): | 714 | for step, batch in enumerate(train_dataloader): |
721 | with accelerator.accumulate(unet): | 715 | with accelerator.accumulate(unet): |
722 | # Convert images to latent space | 716 | # Convert images to latent space |
723 | with torch.no_grad(): | 717 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() |
724 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | 718 | latents = latents * 0.18215 |
725 | latents = latents * 0.18215 | ||
726 | 719 | ||
727 | # Sample noise that we'll add to the latents | 720 | # Sample noise that we'll add to the latents |
728 | noise = torch.randn(latents.shape).to(latents.device) | 721 | noise = torch.randn(latents.shape).to(latents.device) |
@@ -737,8 +730,7 @@ def main(): | |||
737 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | 730 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
738 | 731 | ||
739 | # Get the text embedding for conditioning | 732 | # Get the text embedding for conditioning |
740 | with torch.no_grad(): | 733 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] |
741 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
742 | 734 | ||
743 | # Predict the noise residual | 735 | # Predict the noise residual |
744 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | 736 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
@@ -840,7 +832,8 @@ def main(): | |||
840 | global_progress_bar.clear() | 832 | global_progress_bar.clear() |
841 | 833 | ||
842 | if min_val_loss > val_loss: | 834 | if min_val_loss > val_loss: |
843 | accelerator.print(f"Validation loss reached new minimum: {min_val_loss:.2e} -> {val_loss:.2e}") | 835 | accelerator.print( |
836 | f"Global step {global_step}: Validation loss reached new minimum: {min_val_loss:.2e} -> {val_loss:.2e}") | ||
844 | min_val_loss = val_loss | 837 | min_val_loss = val_loss |
845 | 838 | ||
846 | if sample_checkpoint and accelerator.is_main_process: | 839 | if sample_checkpoint and accelerator.is_main_process: |
diff --git a/environment.yaml b/environment.yaml index 5ecc5a8..de35645 100644 --- a/environment.yaml +++ b/environment.yaml | |||
@@ -6,7 +6,7 @@ dependencies: | |||
6 | - cudatoolkit=11.3 | 6 | - cudatoolkit=11.3 |
7 | - numpy=1.22.3 | 7 | - numpy=1.22.3 |
8 | - pip=20.3 | 8 | - pip=20.3 |
9 | - python=3.8.10 | 9 | - python=3.9.13 |
10 | - pytorch=1.12.1 | 10 | - pytorch=1.12.1 |
11 | - torchvision=0.13.1 | 11 | - torchvision=0.13.1 |
12 | - pandas=1.4.3 | 12 | - pandas=1.4.3 |
@@ -32,6 +32,6 @@ dependencies: | |||
32 | - test-tube>=0.7.5 | 32 | - test-tube>=0.7.5 |
33 | - torch-fidelity==0.3.0 | 33 | - torch-fidelity==0.3.0 |
34 | - torchmetrics==0.9.3 | 34 | - torchmetrics==0.9.3 |
35 | - transformers==4.22.2 | 35 | - transformers==4.23.1 |
36 | - triton==2.0.0.dev20220924 | 36 | - triton==2.0.0.dev20220924 |
37 | - xformers==0.0.13 | 37 | - xformers==0.0.13 |
@@ -22,7 +22,7 @@ torch.backends.cuda.matmul.allow_tf32 = True | |||
22 | default_args = { | 22 | default_args = { |
23 | "model": None, | 23 | "model": None, |
24 | "scheduler": "euler_a", | 24 | "scheduler": "euler_a", |
25 | "precision": "fp16", | 25 | "precision": "fp32", |
26 | "embeddings_dir": "embeddings", | 26 | "embeddings_dir": "embeddings", |
27 | "output_dir": "output/inference", | 27 | "output_dir": "output/inference", |
28 | "config": None, | 28 | "config": None, |
@@ -205,10 +205,10 @@ def load_embeddings(tokenizer, text_encoder, embeddings_dir): | |||
205 | def create_pipeline(model, scheduler, embeddings_dir, dtype): | 205 | def create_pipeline(model, scheduler, embeddings_dir, dtype): |
206 | print("Loading Stable Diffusion pipeline...") | 206 | print("Loading Stable Diffusion pipeline...") |
207 | 207 | ||
208 | tokenizer = CLIPTokenizer.from_pretrained(model + '/tokenizer', torch_dtype=dtype) | 208 | tokenizer = CLIPTokenizer.from_pretrained(model, subfolder='/tokenizer', torch_dtype=dtype) |
209 | text_encoder = CLIPTextModel.from_pretrained(model + '/text_encoder', torch_dtype=dtype) | 209 | text_encoder = CLIPTextModel.from_pretrained(model, subfolder='/text_encoder', torch_dtype=dtype) |
210 | vae = AutoencoderKL.from_pretrained(model + '/vae', torch_dtype=dtype) | 210 | vae = AutoencoderKL.from_pretrained(model, subfolder='/vae', torch_dtype=dtype) |
211 | unet = UNet2DConditionModel.from_pretrained(model + '/unet', torch_dtype=dtype) | 211 | unet = UNet2DConditionModel.from_pretrained(model, subfolder='/unet', torch_dtype=dtype) |
212 | 212 | ||
213 | load_embeddings(tokenizer, text_encoder, embeddings_dir) | 213 | load_embeddings(tokenizer, text_encoder, embeddings_dir) |
214 | 214 | ||
diff --git a/pipelines/stable_diffusion/vlpn_stable_diffusion.py b/pipelines/stable_diffusion/vlpn_stable_diffusion.py index bfecd1c..8927a78 100644 --- a/pipelines/stable_diffusion/vlpn_stable_diffusion.py +++ b/pipelines/stable_diffusion/vlpn_stable_diffusion.py | |||
@@ -11,7 +11,7 @@ from diffusers import AutoencoderKL, DiffusionPipeline, DDIMScheduler, LMSDiscre | |||
11 | from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput | 11 | from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput |
12 | from diffusers.utils import logging | 12 | from diffusers.utils import logging |
13 | from transformers import CLIPTextModel, CLIPTokenizer | 13 | from transformers import CLIPTextModel, CLIPTokenizer |
14 | from schedulers.scheduling_euler_a import EulerAScheduler, CFGDenoiserForward | 14 | from schedulers.scheduling_euler_a import EulerAScheduler |
15 | 15 | ||
16 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name | 16 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name |
17 | 17 | ||
@@ -284,10 +284,9 @@ class VlpnStableDiffusion(DiffusionPipeline): | |||
284 | 284 | ||
285 | noise_pred = None | 285 | noise_pred = None |
286 | if isinstance(self.scheduler, EulerAScheduler): | 286 | if isinstance(self.scheduler, EulerAScheduler): |
287 | sigma = t.reshape(1) | 287 | c_out, c_in, sigma_in = self.scheduler.prepare_input(latent_model_input, t, batch_size) |
288 | sigma_in = torch.cat([sigma] * latent_model_input.shape[0]) | 288 | eps = self.unet(latent_model_input * c_in, sigma_in, encoder_hidden_states=text_embeddings).sample |
289 | noise_pred = CFGDenoiserForward(self.unet, latent_model_input, sigma_in, | 289 | noise_pred = latent_model_input + eps * c_out |
290 | text_embeddings, guidance_scale, quantize=True, DSsigmas=self.scheduler.DSsigmas) | ||
291 | else: | 290 | else: |
292 | # predict the noise residual | 291 | # predict the noise residual |
293 | noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | 292 | noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample |
@@ -305,7 +304,7 @@ class VlpnStableDiffusion(DiffusionPipeline): | |||
305 | image = self.vae.decode(latents).sample | 304 | image = self.vae.decode(latents).sample |
306 | 305 | ||
307 | image = (image / 2 + 0.5).clamp(0, 1) | 306 | image = (image / 2 + 0.5).clamp(0, 1) |
308 | image = image.cpu().permute(0, 2, 3, 1).numpy() | 307 | image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
309 | 308 | ||
310 | if output_type == "pil": | 309 | if output_type == "pil": |
311 | image = self.numpy_to_pil(image) | 310 | image = self.numpy_to_pil(image) |
diff --git a/schedulers/scheduling_euler_a.py b/schedulers/scheduling_euler_a.py index 13ea6b3..6abe971 100644 --- a/schedulers/scheduling_euler_a.py +++ b/schedulers/scheduling_euler_a.py | |||
@@ -7,113 +7,6 @@ from diffusers.configuration_utils import ConfigMixin, register_to_config | |||
7 | from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput | 7 | from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput |
8 | 8 | ||
9 | 9 | ||
10 | ''' | ||
11 | helper functions: append_zero(), | ||
12 | t_to_sigma(), | ||
13 | get_sigmas(), | ||
14 | append_dims(), | ||
15 | CFGDenoiserForward(), | ||
16 | get_scalings(), | ||
17 | DSsigma_to_t(), | ||
18 | DiscreteEpsDDPMDenoiserForward(), | ||
19 | to_d(), | ||
20 | get_ancestral_step() | ||
21 | need cleaning | ||
22 | ''' | ||
23 | |||
24 | |||
25 | def append_zero(x): | ||
26 | return torch.cat([x, x.new_zeros([1])]) | ||
27 | |||
28 | |||
29 | def t_to_sigma(t, sigmas): | ||
30 | t = t.float() | ||
31 | low_idx, high_idx, w = t.floor().long(), t.ceil().long(), t.frac() | ||
32 | return (1 - w) * sigmas[low_idx] + w * sigmas[high_idx] | ||
33 | |||
34 | |||
35 | def get_sigmas(sigmas, n=None): | ||
36 | if n is None: | ||
37 | return append_zero(sigmas.flip(0)) | ||
38 | t_max = len(sigmas) - 1 # = 999 | ||
39 | t = torch.linspace(t_max, 0, n, device=sigmas.device, dtype=sigmas.dtype) | ||
40 | return append_zero(t_to_sigma(t, sigmas)) | ||
41 | |||
42 | # from k_samplers utils.py | ||
43 | |||
44 | |||
45 | def append_dims(x, target_dims): | ||
46 | """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" | ||
47 | dims_to_append = target_dims - x.ndim | ||
48 | if dims_to_append < 0: | ||
49 | raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') | ||
50 | return x[(...,) + (None,) * dims_to_append] | ||
51 | |||
52 | |||
53 | def CFGDenoiserForward(Unet, x_in, sigma_in, cond_in, cond_scale, quantize=False, DSsigmas=None): | ||
54 | # x_in = torch.cat([x] * 2)#A# concat the latent | ||
55 | # sigma_in = torch.cat([sigma] * 2) #A# concat sigma | ||
56 | # cond_in = torch.cat([uncond, cond]) | ||
57 | # uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) | ||
58 | # uncond, cond = DiscreteEpsDDPMDenoiserForward(Unet,x_in, sigma_in,DSsigmas=DSsigmas, cond=cond_in).chunk(2) | ||
59 | # return uncond + (cond - uncond) * cond_scale | ||
60 | noise_pred = DiscreteEpsDDPMDenoiserForward( | ||
61 | Unet, x_in, sigma_in, quantize=quantize, DSsigmas=DSsigmas, cond=cond_in) | ||
62 | return noise_pred | ||
63 | |||
64 | # from k_samplers sampling.py | ||
65 | |||
66 | |||
67 | def to_d(x, sigma, denoised): | ||
68 | """Converts a denoiser output to a Karras ODE derivative.""" | ||
69 | return (x - denoised) / append_dims(sigma.to(denoised.device), x.ndim) | ||
70 | |||
71 | |||
72 | def get_scalings(sigma): | ||
73 | sigma_data = 1. | ||
74 | c_out = -sigma | ||
75 | c_in = 1 / (sigma ** 2 + sigma_data ** 2) ** 0.5 | ||
76 | return c_out, c_in | ||
77 | |||
78 | # DiscreteSchedule DS | ||
79 | |||
80 | |||
81 | def DSsigma_to_t(sigma, quantize=False, DSsigmas=None): | ||
82 | dists = torch.abs(sigma - DSsigmas[:, None]) | ||
83 | if quantize: | ||
84 | return torch.argmin(dists, dim=0).view(sigma.shape) | ||
85 | low_idx, high_idx = torch.sort(torch.topk(dists, dim=0, k=2, largest=False).indices, dim=0)[0] | ||
86 | low, high = DSsigmas[low_idx], DSsigmas[high_idx] | ||
87 | w = (low - sigma) / (low - high) | ||
88 | w = w.clamp(0, 1) | ||
89 | t = (1 - w) * low_idx + w * high_idx | ||
90 | return t.view(sigma.shape) | ||
91 | |||
92 | |||
93 | def DiscreteEpsDDPMDenoiserForward(Unet, input, sigma, DSsigmas=None, quantize=False, **kwargs): | ||
94 | sigma = sigma.to(dtype=input.dtype, device=Unet.device) | ||
95 | DSsigmas = DSsigmas.to(dtype=input.dtype, device=Unet.device) | ||
96 | c_out, c_in = [append_dims(x, input.ndim) for x in get_scalings(sigma)] | ||
97 | # print(f">>>>>>>>>>> {input.dtype} {c_in.dtype} {sigma.dtype} {DSsigmas.dtype}") | ||
98 | eps = Unet(input * c_in, DSsigma_to_t(sigma, quantize=quantize, DSsigmas=DSsigmas), | ||
99 | encoder_hidden_states=kwargs['cond']).sample | ||
100 | return input + eps * c_out | ||
101 | |||
102 | |||
103 | # from k_samplers sampling.py | ||
104 | def get_ancestral_step(sigma_from, sigma_to): | ||
105 | """Calculates the noise level (sigma_down) to step down to and the amount | ||
106 | of noise to add (sigma_up) when doing an ancestral sampling step.""" | ||
107 | sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5 | ||
108 | sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 | ||
109 | return sigma_down, sigma_up | ||
110 | |||
111 | |||
112 | ''' | ||
113 | Euler Ancestral Scheduler | ||
114 | ''' | ||
115 | |||
116 | |||
117 | class EulerAScheduler(SchedulerMixin, ConfigMixin): | 10 | class EulerAScheduler(SchedulerMixin, ConfigMixin): |
118 | """ | 11 | """ |
119 | Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and | 12 | Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and |
@@ -154,20 +47,24 @@ class EulerAScheduler(SchedulerMixin, ConfigMixin): | |||
154 | beta_end: float = 0.02, | 47 | beta_end: float = 0.02, |
155 | beta_schedule: str = "linear", | 48 | beta_schedule: str = "linear", |
156 | trained_betas: Optional[np.ndarray] = None, | 49 | trained_betas: Optional[np.ndarray] = None, |
50 | tensor_format: str = "pt", | ||
51 | num_inference_steps=None, | ||
52 | device='cuda' | ||
157 | ): | 53 | ): |
158 | if trained_betas is not None: | 54 | if trained_betas is not None: |
159 | self.betas = torch.from_numpy(trained_betas) | 55 | self.betas = torch.from_numpy(trained_betas).to(device) |
160 | if beta_schedule == "linear": | 56 | if beta_schedule == "linear": |
161 | self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | 57 | self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32, device=device) |
162 | elif beta_schedule == "scaled_linear": | 58 | elif beta_schedule == "scaled_linear": |
163 | # this schedule is very specific to the latent diffusion model. | 59 | # this schedule is very specific to the latent diffusion model. |
164 | self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | 60 | self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, |
165 | elif beta_schedule == "squaredcos_cap_v2": | 61 | dtype=torch.float32, device=device) ** 2 |
166 | # Glide cosine schedule | ||
167 | self.betas = betas_for_alpha_bar(num_train_timesteps) | ||
168 | else: | 62 | else: |
169 | raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | 63 | raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
170 | 64 | ||
65 | self.device = device | ||
66 | self.tensor_format = tensor_format | ||
67 | |||
171 | self.alphas = 1.0 - self.betas | 68 | self.alphas = 1.0 - self.betas |
172 | self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | 69 | self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
173 | 70 | ||
@@ -175,8 +72,12 @@ class EulerAScheduler(SchedulerMixin, ConfigMixin): | |||
175 | self.init_noise_sigma = 1.0 | 72 | self.init_noise_sigma = 1.0 |
176 | 73 | ||
177 | # setable values | 74 | # setable values |
178 | self.num_inference_steps = None | 75 | self.num_inference_steps = num_inference_steps |
179 | self.timesteps = np.arange(0, num_train_timesteps)[::-1] | 76 | self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy() |
77 | # get sigmas | ||
78 | self.DSsigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 | ||
79 | self.sigmas = self.get_sigmas(self.DSsigmas, self.num_inference_steps) | ||
80 | self.set_format(tensor_format=tensor_format) | ||
180 | 81 | ||
181 | # A# take number of steps as input | 82 | # A# take number of steps as input |
182 | # A# store 1) number of steps 2) timesteps 3) schedule | 83 | # A# store 1) number of steps 2) timesteps 3) schedule |
@@ -192,7 +93,7 @@ class EulerAScheduler(SchedulerMixin, ConfigMixin): | |||
192 | 93 | ||
193 | self.num_inference_steps = num_inference_steps | 94 | self.num_inference_steps = num_inference_steps |
194 | self.DSsigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 | 95 | self.DSsigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 |
195 | self.sigmas = get_sigmas(self.DSsigmas, self.num_inference_steps).to(device=device) | 96 | self.sigmas = self.get_sigmas(self.DSsigmas, self.num_inference_steps) |
196 | self.timesteps = self.sigmas[:-1] | 97 | self.timesteps = self.sigmas[:-1] |
197 | self.is_scale_input_called = False | 98 | self.is_scale_input_called = False |
198 | 99 | ||
@@ -251,8 +152,8 @@ class EulerAScheduler(SchedulerMixin, ConfigMixin): | |||
251 | s_prev = self.sigmas[step_prev_index] | 152 | s_prev = self.sigmas[step_prev_index] |
252 | latents = sample | 153 | latents = sample |
253 | 154 | ||
254 | sigma_down, sigma_up = get_ancestral_step(s, s_prev) | 155 | sigma_down, sigma_up = self.get_ancestral_step(s, s_prev) |
255 | d = to_d(latents, s, model_output) | 156 | d = self.to_d(latents, s, model_output) |
256 | dt = sigma_down - s | 157 | dt = sigma_down - s |
257 | latents = latents + d * dt | 158 | latents = latents + d * dt |
258 | latents = latents + torch.randn(latents.shape, layout=latents.layout, device=latents.device, dtype=latents.dtype, | 159 | latents = latents + torch.randn(latents.shape, layout=latents.layout, device=latents.device, dtype=latents.dtype, |
@@ -313,3 +214,76 @@ class EulerAScheduler(SchedulerMixin, ConfigMixin): | |||
313 | noisy_samples = original_samples + noise * sigma | 214 | noisy_samples = original_samples + noise * sigma |
314 | self.is_scale_input_called = True | 215 | self.is_scale_input_called = True |
315 | return noisy_samples | 216 | return noisy_samples |
217 | |||
218 | # from k_samplers sampling.py | ||
219 | |||
220 | def get_ancestral_step(self, sigma_from, sigma_to): | ||
221 | """Calculates the noise level (sigma_down) to step down to and the amount | ||
222 | of noise to add (sigma_up) when doing an ancestral sampling step.""" | ||
223 | sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5 | ||
224 | sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 | ||
225 | return sigma_down, sigma_up | ||
226 | |||
227 | def t_to_sigma(self, t, sigmas): | ||
228 | t = t.float() | ||
229 | low_idx, high_idx, w = t.floor().long(), t.ceil().long(), t.frac() | ||
230 | return (1 - w) * sigmas[low_idx] + w * sigmas[high_idx] | ||
231 | |||
232 | def append_zero(self, x): | ||
233 | return torch.cat([x, x.new_zeros([1])]) | ||
234 | |||
235 | def get_sigmas(self, sigmas, n=None): | ||
236 | if n is None: | ||
237 | return self.append_zero(sigmas.flip(0)) | ||
238 | t_max = len(sigmas) - 1 # = 999 | ||
239 | device = self.device | ||
240 | t = torch.linspace(t_max, 0, n, device=device) | ||
241 | # t = torch.linspace(t_max, 0, n, device=sigmas.device) | ||
242 | return self.append_zero(self.t_to_sigma(t, sigmas)) | ||
243 | |||
244 | # from k_samplers utils.py | ||
245 | def append_dims(self, x, target_dims): | ||
246 | """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" | ||
247 | dims_to_append = target_dims - x.ndim | ||
248 | if dims_to_append < 0: | ||
249 | raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') | ||
250 | return x[(...,) + (None,) * dims_to_append] | ||
251 | |||
252 | # from k_samplers sampling.py | ||
253 | def to_d(self, x, sigma, denoised): | ||
254 | """Converts a denoiser output to a Karras ODE derivative.""" | ||
255 | return (x - denoised) / self.append_dims(sigma, x.ndim) | ||
256 | |||
257 | def get_scalings(self, sigma): | ||
258 | sigma_data = 1. | ||
259 | c_out = -sigma | ||
260 | c_in = 1 / (sigma ** 2 + sigma_data ** 2) ** 0.5 | ||
261 | return c_out, c_in | ||
262 | |||
263 | # DiscreteSchedule DS | ||
264 | def DSsigma_to_t(self, sigma, quantize=None): | ||
265 | # quantize = self.quantize if quantize is None else quantize | ||
266 | quantize = False | ||
267 | dists = torch.abs(sigma - self.DSsigmas[:, None]) | ||
268 | if quantize: | ||
269 | return torch.argmin(dists, dim=0).view(sigma.shape) | ||
270 | low_idx, high_idx = torch.sort(torch.topk(dists, dim=0, k=2, largest=False).indices, dim=0)[0] | ||
271 | low, high = self.DSsigmas[low_idx], self.DSsigmas[high_idx] | ||
272 | w = (low - sigma) / (low - high) | ||
273 | w = w.clamp(0, 1) | ||
274 | t = (1 - w) * low_idx + w * high_idx | ||
275 | return t.view(sigma.shape) | ||
276 | |||
277 | def prepare_input(self, latent_in, t, batch_size): | ||
278 | sigma = t.reshape(1) # A# potential bug: doesn't work on samples > 1 | ||
279 | |||
280 | sigma_in = torch.cat([sigma] * 2 * batch_size) | ||
281 | # noise_pred = CFGDenoiserForward(self.unet, latent_model_input, sigma_in, text_embeddings , guidance_scale,DSsigmas=self.scheduler.DSsigmas) | ||
282 | # noise_pred = DiscreteEpsDDPMDenoiserForward(self.unet,latent_model_input, sigma_in,DSsigmas=self.scheduler.DSsigmas, cond=cond_in) | ||
283 | c_out, c_in = [self.append_dims(x, latent_in.ndim) for x in self.get_scalings(sigma_in)] | ||
284 | |||
285 | sigma_in = self.DSsigma_to_t(sigma_in) | ||
286 | # s_in = latent_in.new_ones([latent_in.shape[0]]) | ||
287 | # sigma_in = sigma_in * s_in | ||
288 | |||
289 | return c_out, c_in, sigma_in | ||
diff --git a/textual_inversion.py b/textual_inversion.py index e6d856a..3a3741d 100644 --- a/textual_inversion.py +++ b/textual_inversion.py | |||
@@ -17,7 +17,6 @@ from accelerate.logging import get_logger | |||
17 | from accelerate.utils import LoggerType, set_seed | 17 | from accelerate.utils import LoggerType, set_seed |
18 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel | 18 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel |
19 | from diffusers.optimization import get_scheduler | 19 | from diffusers.optimization import get_scheduler |
20 | from diffusers.training_utils import EMAModel | ||
21 | from PIL import Image | 20 | from PIL import Image |
22 | from tqdm.auto import tqdm | 21 | from tqdm.auto import tqdm |
23 | from transformers import CLIPTextModel, CLIPTokenizer | 22 | from transformers import CLIPTextModel, CLIPTokenizer |
@@ -112,7 +111,7 @@ def parse_args(): | |||
112 | parser.add_argument( | 111 | parser.add_argument( |
113 | "--max_train_steps", | 112 | "--max_train_steps", |
114 | type=int, | 113 | type=int, |
115 | default=5000, | 114 | default=3000, |
116 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | 115 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
117 | ) | 116 | ) |
118 | parser.add_argument( | 117 | parser.add_argument( |
@@ -150,31 +149,10 @@ def parse_args(): | |||
150 | parser.add_argument( | 149 | parser.add_argument( |
151 | "--lr_warmup_steps", | 150 | "--lr_warmup_steps", |
152 | type=int, | 151 | type=int, |
153 | default=600, | 152 | default=500, |
154 | help="Number of steps for the warmup in the lr scheduler." | 153 | help="Number of steps for the warmup in the lr scheduler." |
155 | ) | 154 | ) |
156 | parser.add_argument( | 155 | parser.add_argument( |
157 | "--use_ema", | ||
158 | action="store_true", | ||
159 | default=True, | ||
160 | help="Whether to use EMA model." | ||
161 | ) | ||
162 | parser.add_argument( | ||
163 | "--ema_inv_gamma", | ||
164 | type=float, | ||
165 | default=1.0 | ||
166 | ) | ||
167 | parser.add_argument( | ||
168 | "--ema_power", | ||
169 | type=float, | ||
170 | default=1.0 | ||
171 | ) | ||
172 | parser.add_argument( | ||
173 | "--ema_max_decay", | ||
174 | type=float, | ||
175 | default=0.9999 | ||
176 | ) | ||
177 | parser.add_argument( | ||
178 | "--use_8bit_adam", | 156 | "--use_8bit_adam", |
179 | action="store_true", | 157 | action="store_true", |
180 | help="Whether or not to use 8-bit Adam from bitsandbytes." | 158 | help="Whether or not to use 8-bit Adam from bitsandbytes." |
@@ -348,7 +326,6 @@ class Checkpointer: | |||
348 | unet, | 326 | unet, |
349 | tokenizer, | 327 | tokenizer, |
350 | text_encoder, | 328 | text_encoder, |
351 | ema_text_encoder, | ||
352 | placeholder_token, | 329 | placeholder_token, |
353 | placeholder_token_id, | 330 | placeholder_token_id, |
354 | output_dir: Path, | 331 | output_dir: Path, |
@@ -363,7 +340,6 @@ class Checkpointer: | |||
363 | self.unet = unet | 340 | self.unet = unet |
364 | self.tokenizer = tokenizer | 341 | self.tokenizer = tokenizer |
365 | self.text_encoder = text_encoder | 342 | self.text_encoder = text_encoder |
366 | self.ema_text_encoder = ema_text_encoder | ||
367 | self.placeholder_token = placeholder_token | 343 | self.placeholder_token = placeholder_token |
368 | self.placeholder_token_id = placeholder_token_id | 344 | self.placeholder_token_id = placeholder_token_id |
369 | self.output_dir = output_dir | 345 | self.output_dir = output_dir |
@@ -380,8 +356,7 @@ class Checkpointer: | |||
380 | checkpoints_path = self.output_dir.joinpath("checkpoints") | 356 | checkpoints_path = self.output_dir.joinpath("checkpoints") |
381 | checkpoints_path.mkdir(parents=True, exist_ok=True) | 357 | checkpoints_path.mkdir(parents=True, exist_ok=True) |
382 | 358 | ||
383 | unwrapped = self.accelerator.unwrap_model( | 359 | unwrapped = self.accelerator.unwrap_model(self.text_encoder) |
384 | self.ema_text_encoder.averaged_model if self.ema_text_encoder is not None else self.text_encoder) | ||
385 | 360 | ||
386 | # Save a checkpoint | 361 | # Save a checkpoint |
387 | learned_embeds = unwrapped.get_input_embeddings().weight[self.placeholder_token_id] | 362 | learned_embeds = unwrapped.get_input_embeddings().weight[self.placeholder_token_id] |
@@ -400,8 +375,7 @@ class Checkpointer: | |||
400 | def save_samples(self, step, height, width, guidance_scale, eta, num_inference_steps): | 375 | def save_samples(self, step, height, width, guidance_scale, eta, num_inference_steps): |
401 | samples_path = Path(self.output_dir).joinpath("samples") | 376 | samples_path = Path(self.output_dir).joinpath("samples") |
402 | 377 | ||
403 | unwrapped = self.accelerator.unwrap_model( | 378 | unwrapped = self.accelerator.unwrap_model(self.text_encoder) |
404 | self.ema_text_encoder.averaged_model if self.ema_text_encoder is not None else self.text_encoder) | ||
405 | scheduler = EulerAScheduler( | 379 | scheduler = EulerAScheduler( |
406 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | 380 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" |
407 | ) | 381 | ) |
@@ -507,9 +481,7 @@ def main(): | |||
507 | if args.tokenizer_name: | 481 | if args.tokenizer_name: |
508 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | 482 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) |
509 | elif args.pretrained_model_name_or_path: | 483 | elif args.pretrained_model_name_or_path: |
510 | tokenizer = CLIPTokenizer.from_pretrained( | 484 | tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') |
511 | args.pretrained_model_name_or_path + '/tokenizer' | ||
512 | ) | ||
513 | 485 | ||
514 | # Add the placeholder token in tokenizer | 486 | # Add the placeholder token in tokenizer |
515 | num_added_tokens = tokenizer.add_tokens(args.placeholder_token) | 487 | num_added_tokens = tokenizer.add_tokens(args.placeholder_token) |
@@ -530,15 +502,10 @@ def main(): | |||
530 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | 502 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) |
531 | 503 | ||
532 | # Load models and create wrapper for stable diffusion | 504 | # Load models and create wrapper for stable diffusion |
533 | text_encoder = CLIPTextModel.from_pretrained( | 505 | text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') |
534 | args.pretrained_model_name_or_path + '/text_encoder', | 506 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') |
535 | ) | ||
536 | vae = AutoencoderKL.from_pretrained( | ||
537 | args.pretrained_model_name_or_path + '/vae', | ||
538 | ) | ||
539 | unet = UNet2DConditionModel.from_pretrained( | 507 | unet = UNet2DConditionModel.from_pretrained( |
540 | args.pretrained_model_name_or_path + '/unet', | 508 | args.pretrained_model_name_or_path, subfolder='unet') |
541 | ) | ||
542 | 509 | ||
543 | if args.gradient_checkpointing: | 510 | if args.gradient_checkpointing: |
544 | unet.enable_gradient_checkpointing() | 511 | unet.enable_gradient_checkpointing() |
@@ -707,13 +674,6 @@ def main(): | |||
707 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler | 674 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler |
708 | ) | 675 | ) |
709 | 676 | ||
710 | ema_text_encoder = EMAModel( | ||
711 | text_encoder, | ||
712 | inv_gamma=args.ema_inv_gamma, | ||
713 | power=args.ema_power, | ||
714 | max_value=args.ema_max_decay | ||
715 | ) if args.use_ema else None | ||
716 | |||
717 | # Move vae and unet to device | 677 | # Move vae and unet to device |
718 | vae.to(accelerator.device) | 678 | vae.to(accelerator.device) |
719 | unet.to(accelerator.device) | 679 | unet.to(accelerator.device) |
@@ -757,7 +717,6 @@ def main(): | |||
757 | unet=unet, | 717 | unet=unet, |
758 | tokenizer=tokenizer, | 718 | tokenizer=tokenizer, |
759 | text_encoder=text_encoder, | 719 | text_encoder=text_encoder, |
760 | ema_text_encoder=ema_text_encoder, | ||
761 | placeholder_token=args.placeholder_token, | 720 | placeholder_token=args.placeholder_token, |
762 | placeholder_token_id=placeholder_token_id, | 721 | placeholder_token_id=placeholder_token_id, |
763 | output_dir=basepath, | 722 | output_dir=basepath, |
@@ -777,7 +736,7 @@ def main(): | |||
777 | disable=not accelerator.is_local_main_process, | 736 | disable=not accelerator.is_local_main_process, |
778 | dynamic_ncols=True | 737 | dynamic_ncols=True |
779 | ) | 738 | ) |
780 | local_progress_bar.set_description("Batch X out of Y") | 739 | local_progress_bar.set_description("Epoch X / Y") |
781 | 740 | ||
782 | global_progress_bar = tqdm( | 741 | global_progress_bar = tqdm( |
783 | range(args.max_train_steps + val_steps), | 742 | range(args.max_train_steps + val_steps), |
@@ -788,7 +747,7 @@ def main(): | |||
788 | 747 | ||
789 | try: | 748 | try: |
790 | for epoch in range(num_epochs): | 749 | for epoch in range(num_epochs): |
791 | local_progress_bar.set_description(f"Batch {epoch + 1} out of {num_epochs}") | 750 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") |
792 | local_progress_bar.reset() | 751 | local_progress_bar.reset() |
793 | 752 | ||
794 | text_encoder.train() | 753 | text_encoder.train() |
@@ -799,9 +758,8 @@ def main(): | |||
799 | for step, batch in enumerate(train_dataloader): | 758 | for step, batch in enumerate(train_dataloader): |
800 | with accelerator.accumulate(text_encoder): | 759 | with accelerator.accumulate(text_encoder): |
801 | # Convert images to latent space | 760 | # Convert images to latent space |
802 | with torch.no_grad(): | 761 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() |
803 | latents = vae.encode(batch["pixel_values"]).latent_dist.sample() | 762 | latents = latents * 0.18215 |
804 | latents = latents * 0.18215 | ||
805 | 763 | ||
806 | # Sample noise that we'll add to the latents | 764 | # Sample noise that we'll add to the latents |
807 | noise = torch.randn(latents.shape).to(latents.device) | 765 | noise = torch.randn(latents.shape).to(latents.device) |
@@ -859,9 +817,6 @@ def main(): | |||
859 | 817 | ||
860 | # Checks if the accelerator has performed an optimization step behind the scenes | 818 | # Checks if the accelerator has performed an optimization step behind the scenes |
861 | if accelerator.sync_gradients: | 819 | if accelerator.sync_gradients: |
862 | if args.use_ema: | ||
863 | ema_text_encoder.step(unet) | ||
864 | |||
865 | local_progress_bar.update(1) | 820 | local_progress_bar.update(1) |
866 | global_progress_bar.update(1) | 821 | global_progress_bar.update(1) |
867 | 822 | ||
@@ -881,8 +836,6 @@ def main(): | |||
881 | }) | 836 | }) |
882 | 837 | ||
883 | logs = {"train/loss": loss, "lr": lr_scheduler.get_last_lr()[0]} | 838 | logs = {"train/loss": loss, "lr": lr_scheduler.get_last_lr()[0]} |
884 | if args.use_ema: | ||
885 | logs["ema_decay"] = ema_text_encoder.decay | ||
886 | 839 | ||
887 | accelerator.log(logs, step=global_step) | 840 | accelerator.log(logs, step=global_step) |
888 | 841 | ||
@@ -937,7 +890,8 @@ def main(): | |||
937 | global_progress_bar.clear() | 890 | global_progress_bar.clear() |
938 | 891 | ||
939 | if min_val_loss > val_loss: | 892 | if min_val_loss > val_loss: |
940 | accelerator.print(f"Validation loss reached new minimum: {min_val_loss:.2e} -> {val_loss:.2e}") | 893 | accelerator.print( |
894 | f"Global step {global_step}: Validation loss reached new minimum: {min_val_loss:.2e} -> {val_loss:.2e}") | ||
941 | checkpointer.checkpoint(global_step + global_step_offset, "milestone") | 895 | checkpointer.checkpoint(global_step + global_step_offset, "milestone") |
942 | min_val_loss = val_loss | 896 | min_val_loss = val_loss |
943 | 897 | ||