diff options
Diffstat (limited to 'data')
| -rw-r--r-- | data/csv.py (renamed from data/dreambooth/csv.py) | 0 | ||||
| -rw-r--r-- | data/textual_inversion/csv.py | 150 |
2 files changed, 0 insertions, 150 deletions
diff --git a/data/dreambooth/csv.py b/data/csv.py index abd329d..abd329d 100644 --- a/data/dreambooth/csv.py +++ b/data/csv.py | |||
diff --git a/data/textual_inversion/csv.py b/data/textual_inversion/csv.py deleted file mode 100644 index 4c5e27e..0000000 --- a/data/textual_inversion/csv.py +++ /dev/null | |||
| @@ -1,150 +0,0 @@ | |||
| 1 | import os | ||
| 2 | import numpy as np | ||
| 3 | import pandas as pd | ||
| 4 | from pathlib import Path | ||
| 5 | import math | ||
| 6 | import pytorch_lightning as pl | ||
| 7 | from PIL import Image | ||
| 8 | from torch.utils.data import Dataset, DataLoader, random_split | ||
| 9 | from torchvision import transforms | ||
| 10 | |||
| 11 | |||
| 12 | class CSVDataModule(pl.LightningDataModule): | ||
| 13 | def __init__(self, | ||
| 14 | batch_size, | ||
| 15 | data_file, | ||
| 16 | tokenizer, | ||
| 17 | size=512, | ||
| 18 | repeats=100, | ||
| 19 | interpolation="bicubic", | ||
| 20 | placeholder_token="*", | ||
| 21 | center_crop=False, | ||
| 22 | valid_set_size=None, | ||
| 23 | generator=None): | ||
| 24 | super().__init__() | ||
| 25 | |||
| 26 | self.data_file = Path(data_file) | ||
| 27 | |||
| 28 | if not self.data_file.is_file(): | ||
| 29 | raise ValueError("data_file must be a file") | ||
| 30 | |||
| 31 | self.data_root = self.data_file.parent | ||
| 32 | self.tokenizer = tokenizer | ||
| 33 | self.size = size | ||
| 34 | self.repeats = repeats | ||
| 35 | self.placeholder_token = placeholder_token | ||
| 36 | self.center_crop = center_crop | ||
| 37 | self.interpolation = interpolation | ||
| 38 | self.valid_set_size = valid_set_size | ||
| 39 | self.generator = generator | ||
| 40 | |||
| 41 | self.batch_size = batch_size | ||
| 42 | |||
| 43 | def prepare_data(self): | ||
| 44 | metadata = pd.read_csv(self.data_file) | ||
| 45 | image_paths = [os.path.join(self.data_root, f_path) for f_path in metadata['image'].values] | ||
| 46 | prompts = metadata['prompt'].values | ||
| 47 | nprompts = metadata['nprompt'].values if 'nprompt' in metadata else [""] * len(image_paths) | ||
| 48 | skips = metadata['skip'].values if 'skip' in metadata else [""] * len(image_paths) | ||
| 49 | self.data_full = [(i, p, n) for i, p, n, s in zip(image_paths, prompts, nprompts, skips) if s != "x"] | ||
| 50 | |||
| 51 | def setup(self, stage=None): | ||
| 52 | valid_set_size = int(len(self.data_full) * 0.2) | ||
| 53 | if self.valid_set_size: | ||
| 54 | valid_set_size = min(valid_set_size, self.valid_set_size) | ||
| 55 | valid_set_size = max(valid_set_size, 1) | ||
| 56 | train_set_size = len(self.data_full) - valid_set_size | ||
| 57 | |||
| 58 | self.data_train, self.data_val = random_split(self.data_full, [train_set_size, valid_set_size], self.generator) | ||
| 59 | |||
| 60 | train_dataset = CSVDataset(self.data_train, self.tokenizer, size=self.size, repeats=self.repeats, interpolation=self.interpolation, | ||
| 61 | placeholder_token=self.placeholder_token, center_crop=self.center_crop) | ||
| 62 | val_dataset = CSVDataset(self.data_val, self.tokenizer, size=self.size, repeats=self.repeats, interpolation=self.interpolation, | ||
| 63 | placeholder_token=self.placeholder_token, center_crop=self.center_crop) | ||
| 64 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, pin_memory=True, shuffle=True) | ||
| 65 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, pin_memory=True) | ||
| 66 | |||
| 67 | def train_dataloader(self): | ||
| 68 | return self.train_dataloader_ | ||
| 69 | |||
| 70 | def val_dataloader(self): | ||
| 71 | return self.val_dataloader_ | ||
| 72 | |||
| 73 | |||
| 74 | class CSVDataset(Dataset): | ||
| 75 | def __init__(self, | ||
| 76 | data, | ||
| 77 | tokenizer, | ||
| 78 | size=512, | ||
| 79 | repeats=1, | ||
| 80 | interpolation="bicubic", | ||
| 81 | placeholder_token="*", | ||
| 82 | center_crop=False, | ||
| 83 | batch_size=1, | ||
| 84 | ): | ||
| 85 | |||
| 86 | self.data = data | ||
| 87 | self.tokenizer = tokenizer | ||
| 88 | self.placeholder_token = placeholder_token | ||
| 89 | self.batch_size = batch_size | ||
| 90 | self.cache = {} | ||
| 91 | |||
| 92 | self.num_instance_images = len(self.data) | ||
| 93 | self._length = self.num_instance_images * repeats | ||
| 94 | |||
| 95 | self.interpolation = {"linear": transforms.InterpolationMode.NEAREST, | ||
| 96 | "bilinear": transforms.InterpolationMode.BILINEAR, | ||
| 97 | "bicubic": transforms.InterpolationMode.BICUBIC, | ||
| 98 | "lanczos": transforms.InterpolationMode.LANCZOS, | ||
| 99 | }[interpolation] | ||
| 100 | self.image_transforms = transforms.Compose( | ||
| 101 | [ | ||
| 102 | transforms.Resize(size, interpolation=self.interpolation), | ||
| 103 | transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | ||
| 104 | transforms.RandomHorizontalFlip(), | ||
| 105 | transforms.ToTensor(), | ||
| 106 | transforms.Normalize([0.5], [0.5]), | ||
| 107 | ] | ||
| 108 | ) | ||
| 109 | |||
| 110 | def __len__(self): | ||
| 111 | return math.ceil(self._length / self.batch_size) * self.batch_size | ||
| 112 | |||
| 113 | def get_example(self, i): | ||
| 114 | image_path, prompt, nprompt = self.data[i % self.num_instance_images] | ||
| 115 | |||
| 116 | if image_path in self.cache: | ||
| 117 | return self.cache[image_path] | ||
| 118 | |||
| 119 | example = {} | ||
| 120 | |||
| 121 | instance_image = Image.open(image_path) | ||
| 122 | if not instance_image.mode == "RGB": | ||
| 123 | instance_image = instance_image.convert("RGB") | ||
| 124 | |||
| 125 | prompt = prompt.format(self.placeholder_token) | ||
| 126 | |||
| 127 | example["prompts"] = prompt | ||
| 128 | example["nprompts"] = nprompt | ||
| 129 | example["pixel_values"] = instance_image | ||
| 130 | example["input_ids"] = self.tokenizer( | ||
| 131 | prompt, | ||
| 132 | padding="max_length", | ||
| 133 | truncation=True, | ||
| 134 | max_length=self.tokenizer.model_max_length, | ||
| 135 | return_tensors="pt", | ||
| 136 | ).input_ids[0] | ||
| 137 | |||
| 138 | self.cache[image_path] = example | ||
| 139 | return example | ||
| 140 | |||
| 141 | def __getitem__(self, i): | ||
| 142 | example = {} | ||
| 143 | unprocessed_example = self.get_example(i) | ||
| 144 | |||
| 145 | example["prompts"] = unprocessed_example["prompts"] | ||
| 146 | example["nprompts"] = unprocessed_example["nprompts"] | ||
| 147 | example["input_ids"] = unprocessed_example["input_ids"] | ||
| 148 | example["pixel_values"] = self.image_transforms(unprocessed_example["pixel_values"]) | ||
| 149 | |||
| 150 | return example | ||
