diff options
Diffstat (limited to 'models')
| -rw-r--r-- | models/clip/embeddings.py | 6 | ||||
| -rw-r--r-- | models/clip/prompt.py | 38 | ||||
| -rw-r--r-- | models/clip/util.py | 34 |
3 files changed, 39 insertions, 39 deletions
diff --git a/models/clip/embeddings.py b/models/clip/embeddings.py index 9a23a2a..761efbc 100644 --- a/models/clip/embeddings.py +++ b/models/clip/embeddings.py | |||
| @@ -40,6 +40,8 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 40 | self.position_embedding = embeddings.position_embedding | 40 | self.position_embedding = embeddings.position_embedding |
| 41 | self.initializer_factor = config.initializer_factor | 41 | self.initializer_factor = config.initializer_factor |
| 42 | 42 | ||
| 43 | self.decay_target = self.token_embedding.weight[:, :].norm(dim=-1, keepdim=True).median().item() | ||
| 44 | |||
| 43 | self.temp_token_embedding = nn.Embedding( | 45 | self.temp_token_embedding = nn.Embedding( |
| 44 | self.token_embedding.num_embeddings, | 46 | self.token_embedding.num_embeddings, |
| 45 | self.token_embedding.embedding_dim, | 47 | self.token_embedding.embedding_dim, |
| @@ -99,7 +101,9 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 99 | 101 | ||
| 100 | return embeds | 102 | return embeds |
| 101 | 103 | ||
| 102 | def normalize(self, target: float = 0.4, lambda_: float = 1.0): | 104 | def normalize(self, target: Optional[float] = None, lambda_: float = 1.0): |
| 105 | if target is None: | ||
| 106 | target = self.decay_target | ||
| 103 | w = self.temp_token_embedding.weight | 107 | w = self.temp_token_embedding.weight |
| 104 | pre_norm = w[self.temp_token_ids, :].norm(dim=-1, keepdim=True) | 108 | pre_norm = w[self.temp_token_ids, :].norm(dim=-1, keepdim=True) |
| 105 | w[self.temp_token_ids] = F.normalize( | 109 | w[self.temp_token_ids] = F.normalize( |
diff --git a/models/clip/prompt.py b/models/clip/prompt.py deleted file mode 100644 index a7380be..0000000 --- a/models/clip/prompt.py +++ /dev/null | |||
| @@ -1,38 +0,0 @@ | |||
| 1 | from typing import Union, Optional | ||
| 2 | |||
| 3 | import torch | ||
| 4 | |||
| 5 | from transformers import CLIPTokenizer, CLIPTextModel | ||
| 6 | |||
| 7 | |||
| 8 | class PromptProcessor(): | ||
| 9 | def __init__(self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel): | ||
| 10 | self.tokenizer = tokenizer | ||
| 11 | self.text_encoder = text_encoder | ||
| 12 | |||
| 13 | def get_input_ids(self, prompt: Union[str, list[str]]): | ||
| 14 | return self.tokenizer( | ||
| 15 | prompt, | ||
| 16 | padding="do_not_pad", | ||
| 17 | ).input_ids | ||
| 18 | |||
| 19 | def unify_input_ids(self, input_ids: list[list[int]]): | ||
| 20 | return self.tokenizer.pad( | ||
| 21 | {"input_ids": input_ids}, | ||
| 22 | padding=True, | ||
| 23 | pad_to_multiple_of=self.tokenizer.model_max_length, | ||
| 24 | return_tensors="pt" | ||
| 25 | ) | ||
| 26 | |||
| 27 | def get_embeddings(self, input_ids: torch.LongTensor, position_ids: Optional[torch.LongTensor] = None, attention_mask=None): | ||
| 28 | prompts = input_ids.shape[0] | ||
| 29 | |||
| 30 | input_ids = input_ids.view((-1, self.tokenizer.model_max_length)).to(self.text_encoder.device) | ||
| 31 | if position_ids is not None: | ||
| 32 | position_ids = position_ids.view((-1, self.tokenizer.model_max_length)).to(self.text_encoder.device) | ||
| 33 | if attention_mask is not None: | ||
| 34 | attention_mask = attention_mask.view((-1, self.tokenizer.model_max_length)).to(self.text_encoder.device) | ||
| 35 | |||
| 36 | text_embeddings = self.text_encoder(input_ids, position_ids=position_ids, attention_mask=attention_mask)[0] | ||
| 37 | text_embeddings = text_embeddings.view((prompts, -1, text_embeddings.shape[2])) | ||
| 38 | return text_embeddings | ||
diff --git a/models/clip/util.py b/models/clip/util.py new file mode 100644 index 0000000..8de8c19 --- /dev/null +++ b/models/clip/util.py | |||
| @@ -0,0 +1,34 @@ | |||
| 1 | from typing import Optional | ||
| 2 | |||
| 3 | import torch | ||
| 4 | |||
| 5 | from transformers import CLIPTokenizer, CLIPTextModel | ||
| 6 | |||
| 7 | |||
| 8 | def unify_input_ids(tokenizer: CLIPTokenizer, input_ids: list[list[int]]): | ||
| 9 | return tokenizer.pad( | ||
| 10 | {"input_ids": input_ids}, | ||
| 11 | padding=True, | ||
| 12 | pad_to_multiple_of=tokenizer.model_max_length, | ||
| 13 | return_tensors="pt" | ||
| 14 | ) | ||
| 15 | |||
| 16 | |||
| 17 | def get_extended_embeddings( | ||
| 18 | text_encoder: CLIPTextModel, | ||
| 19 | input_ids: torch.LongTensor, | ||
| 20 | position_ids: Optional[torch.LongTensor] = None, | ||
| 21 | attention_mask=None | ||
| 22 | ): | ||
| 23 | model_max_length = text_encoder.config.max_position_embeddings | ||
| 24 | prompts = input_ids.shape[0] | ||
| 25 | |||
| 26 | input_ids = input_ids.view((-1, model_max_length)).to(text_encoder.device) | ||
| 27 | if position_ids is not None: | ||
| 28 | position_ids = position_ids.view((-1, model_max_length)).to(text_encoder.device) | ||
| 29 | if attention_mask is not None: | ||
| 30 | attention_mask = attention_mask.view((-1, model_max_length)).to(text_encoder.device) | ||
| 31 | |||
| 32 | text_embeddings = text_encoder(input_ids, position_ids=position_ids, attention_mask=attention_mask)[0] | ||
| 33 | text_embeddings = text_embeddings.view((prompts, -1, text_embeddings.shape[2])) | ||
| 34 | return text_embeddings | ||
