diff options
Diffstat (limited to 'pipelines')
| -rw-r--r-- | pipelines/stable_diffusion/vlpn_stable_diffusion.py | 94 |
1 files changed, 54 insertions, 40 deletions
diff --git a/pipelines/stable_diffusion/vlpn_stable_diffusion.py b/pipelines/stable_diffusion/vlpn_stable_diffusion.py index 8b08a6f..b68b028 100644 --- a/pipelines/stable_diffusion/vlpn_stable_diffusion.py +++ b/pipelines/stable_diffusion/vlpn_stable_diffusion.py | |||
| @@ -24,6 +24,22 @@ def preprocess(image, w, h): | |||
| 24 | return 2.0 * image - 1.0 | 24 | return 2.0 * image - 1.0 |
| 25 | 25 | ||
| 26 | 26 | ||
| 27 | def normalize_prompt(prompt: Union[str, List[str], List[List[str]]], batch_size: int = 1, prompt_size: int = None): | ||
| 28 | if isinstance(prompt, str): | ||
| 29 | prompt = [prompt] * batch_size | ||
| 30 | |||
| 31 | if isinstance(prompt, list) and isinstance(prompt[0], str): | ||
| 32 | prompt = [[p] for p in prompt] | ||
| 33 | |||
| 34 | if isinstance(prompt, list) and isinstance(prompt[0], list): | ||
| 35 | prompt_size = prompt_size or max([len(p) for p in prompt]) | ||
| 36 | prompt: List[List[str]] = [subprompt + [""] * (prompt_size - len(subprompt)) for subprompt in prompt] | ||
| 37 | else: | ||
| 38 | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | ||
| 39 | |||
| 40 | return prompt_size, prompt | ||
| 41 | |||
| 42 | |||
| 27 | class VlpnStableDiffusion(DiffusionPipeline): | 43 | class VlpnStableDiffusion(DiffusionPipeline): |
| 28 | def __init__( | 44 | def __init__( |
| 29 | self, | 45 | self, |
| @@ -85,11 +101,39 @@ class VlpnStableDiffusion(DiffusionPipeline): | |||
| 85 | # set slice_size = `None` to disable `attention slicing` | 101 | # set slice_size = `None` to disable `attention slicing` |
| 86 | self.enable_attention_slicing(None) | 102 | self.enable_attention_slicing(None) |
| 87 | 103 | ||
| 104 | def embeddings_for_prompt(self, prompt: List[List[str]]): | ||
| 105 | text_embeddings = [] | ||
| 106 | |||
| 107 | for p in prompt: | ||
| 108 | inputs = self.tokenizer( | ||
| 109 | p, | ||
| 110 | padding="max_length", | ||
| 111 | max_length=self.tokenizer.model_max_length, | ||
| 112 | return_tensors="pt", | ||
| 113 | ) | ||
| 114 | input_ids = inputs.input_ids | ||
| 115 | |||
| 116 | if input_ids.shape[-1] > self.tokenizer.model_max_length: | ||
| 117 | removed_text = self.tokenizer.batch_decode(input_ids[:, self.tokenizer.model_max_length:]) | ||
| 118 | logger.warning( | ||
| 119 | "The following part of your input was truncated because CLIP can only handle sequences up to" | ||
| 120 | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | ||
| 121 | ) | ||
| 122 | print(f"Too many tokens: {removed_text}") | ||
| 123 | input_ids = input_ids[:, : self.tokenizer.model_max_length] | ||
| 124 | |||
| 125 | embeddings = self.text_encoder(input_ids.to(self.device))[0] | ||
| 126 | embeddings = embeddings.reshape((1, -1, 768)) | ||
| 127 | text_embeddings.append(embeddings) | ||
| 128 | |||
| 129 | text_embeddings = torch.cat(text_embeddings) | ||
| 130 | return text_embeddings | ||
| 131 | |||
| 88 | @torch.no_grad() | 132 | @torch.no_grad() |
| 89 | def __call__( | 133 | def __call__( |
| 90 | self, | 134 | self, |
| 91 | prompt: Union[str, List[str]], | 135 | prompt: Union[str, List[str], List[List[str]]], |
| 92 | negative_prompt: Optional[Union[str, List[str]]] = None, | 136 | negative_prompt: Optional[Union[str, List[str], List[List[str]]]] = None, |
| 93 | strength: float = 0.8, | 137 | strength: float = 0.8, |
| 94 | height: Optional[int] = 512, | 138 | height: Optional[int] = 512, |
| 95 | width: Optional[int] = 512, | 139 | width: Optional[int] = 512, |
| @@ -151,23 +195,13 @@ class VlpnStableDiffusion(DiffusionPipeline): | |||
| 151 | (nsfw) content, according to the `safety_checker`. | 195 | (nsfw) content, according to the `safety_checker`. |
| 152 | """ | 196 | """ |
| 153 | 197 | ||
| 154 | if isinstance(prompt, str): | 198 | prompt_size, prompt = normalize_prompt(prompt) |
| 155 | batch_size = 1 | 199 | batch_size = len(prompt) |
| 156 | elif isinstance(prompt, list): | 200 | _, negative_prompt = normalize_prompt(negative_prompt or "", batch_size, prompt_size) |
| 157 | batch_size = len(prompt) | ||
| 158 | else: | ||
| 159 | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | ||
| 160 | 201 | ||
| 161 | if negative_prompt is None: | 202 | if len(negative_prompt) != batch_size: |
| 162 | negative_prompt = [""] * batch_size | 203 | raise ValueError( |
| 163 | elif isinstance(negative_prompt, str): | 204 | f"`prompt` and `negative_prompt` have to be the same length, but are {batch_size} and {len(negative_prompt)}") |
| 164 | negative_prompt = [negative_prompt] * batch_size | ||
| 165 | elif isinstance(negative_prompt, list): | ||
| 166 | if len(negative_prompt) != batch_size: | ||
| 167 | raise ValueError( | ||
| 168 | f"`prompt` and `negative_prompt` have to be the same length, but are {len(prompt)} and {len(negative_prompt)}") | ||
| 169 | else: | ||
| 170 | raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") | ||
| 171 | 205 | ||
| 172 | if height % 8 != 0 or width % 8 != 0: | 206 | if height % 8 != 0 or width % 8 != 0: |
| 173 | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 207 | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
| @@ -179,23 +213,7 @@ class VlpnStableDiffusion(DiffusionPipeline): | |||
| 179 | self.scheduler.set_timesteps(num_inference_steps) | 213 | self.scheduler.set_timesteps(num_inference_steps) |
| 180 | 214 | ||
| 181 | # get prompt text embeddings | 215 | # get prompt text embeddings |
| 182 | text_inputs = self.tokenizer( | 216 | text_embeddings = self.embeddings_for_prompt(prompt) |
| 183 | prompt, | ||
| 184 | padding="max_length", | ||
| 185 | max_length=self.tokenizer.model_max_length, | ||
| 186 | return_tensors="pt", | ||
| 187 | ) | ||
| 188 | text_input_ids = text_inputs.input_ids | ||
| 189 | |||
| 190 | if text_input_ids.shape[-1] > self.tokenizer.model_max_length: | ||
| 191 | removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length:]) | ||
| 192 | logger.warning( | ||
| 193 | "The following part of your input was truncated because CLIP can only handle sequences up to" | ||
| 194 | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | ||
| 195 | ) | ||
| 196 | print(f"Too many tokens: {removed_text}") | ||
| 197 | text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | ||
| 198 | text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] | ||
| 199 | 217 | ||
| 200 | # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | 218 | # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) |
| 201 | # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | 219 | # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` |
| @@ -203,11 +221,7 @@ class VlpnStableDiffusion(DiffusionPipeline): | |||
| 203 | do_classifier_free_guidance = guidance_scale > 1.0 | 221 | do_classifier_free_guidance = guidance_scale > 1.0 |
| 204 | # get unconditional embeddings for classifier free guidance | 222 | # get unconditional embeddings for classifier free guidance |
| 205 | if do_classifier_free_guidance: | 223 | if do_classifier_free_guidance: |
| 206 | max_length = text_input_ids.shape[-1] | 224 | uncond_embeddings = self.embeddings_for_prompt(negative_prompt) |
| 207 | uncond_input = self.tokenizer( | ||
| 208 | negative_prompt, padding="max_length", max_length=max_length, return_tensors="pt" | ||
| 209 | ) | ||
| 210 | uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | ||
| 211 | 225 | ||
| 212 | # For classifier free guidance, we need to do two forward passes. | 226 | # For classifier free guidance, we need to do two forward passes. |
| 213 | # Here we concatenate the unconditional and text embeddings into a single batch | 227 | # Here we concatenate the unconditional and text embeddings into a single batch |
