diff options
Diffstat (limited to 'schedulers')
-rw-r--r-- | schedulers/scheduling_deis_multistep.py | 500 |
1 files changed, 0 insertions, 500 deletions
diff --git a/schedulers/scheduling_deis_multistep.py b/schedulers/scheduling_deis_multistep.py deleted file mode 100644 index ea1281e..0000000 --- a/schedulers/scheduling_deis_multistep.py +++ /dev/null | |||
@@ -1,500 +0,0 @@ | |||
1 | # Copyright 2022 FLAIR Lab and The HuggingFace Team. All rights reserved. | ||
2 | # | ||
3 | # Licensed under the Apache License, Version 2.0 (the "License"); | ||
4 | # you may not use this file except in compliance with the License. | ||
5 | # You may obtain a copy of the License at | ||
6 | # | ||
7 | # http://www.apache.org/licenses/LICENSE-2.0 | ||
8 | # | ||
9 | # Unless required by applicable law or agreed to in writing, software | ||
10 | # distributed under the License is distributed on an "AS IS" BASIS, | ||
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
12 | # See the License for the specific language governing permissions and | ||
13 | # limitations under the License. | ||
14 | |||
15 | # DISCLAIMER: check https://arxiv.org/abs/2204.13902 and https://github.com/qsh-zh/deis for more info | ||
16 | # The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py | ||
17 | |||
18 | import math | ||
19 | from typing import List, Optional, Tuple, Union | ||
20 | |||
21 | import numpy as np | ||
22 | import torch | ||
23 | |||
24 | from diffusers.configuration_utils import ConfigMixin, register_to_config | ||
25 | from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput | ||
26 | |||
27 | |||
28 | def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): | ||
29 | """ | ||
30 | Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | ||
31 | (1-beta) over time from t = [0,1]. | ||
32 | |||
33 | Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | ||
34 | to that part of the diffusion process. | ||
35 | |||
36 | |||
37 | Args: | ||
38 | num_diffusion_timesteps (`int`): the number of betas to produce. | ||
39 | max_beta (`float`): the maximum beta to use; use values lower than 1 to | ||
40 | prevent singularities. | ||
41 | |||
42 | Returns: | ||
43 | betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | ||
44 | """ | ||
45 | |||
46 | def alpha_bar(time_step): | ||
47 | return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 | ||
48 | |||
49 | betas = [] | ||
50 | for i in range(num_diffusion_timesteps): | ||
51 | t1 = i / num_diffusion_timesteps | ||
52 | t2 = (i + 1) / num_diffusion_timesteps | ||
53 | betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | ||
54 | return torch.tensor(betas, dtype=torch.float32) | ||
55 | |||
56 | |||
57 | class DEISMultistepScheduler(SchedulerMixin, ConfigMixin): | ||
58 | """ | ||
59 | DEIS (https://arxiv.org/abs/2204.13902) is a fast high order solver for diffusion ODEs. We slightly modify the | ||
60 | polynomial fitting formula in log-rho space instead of the original linear t space in DEIS paper. The modification | ||
61 | enjoys closed-form coefficients for exponential multistep update instead of replying on the numerical solver. More | ||
62 | variants of DEIS can be found in https://github.com/qsh-zh/deis. | ||
63 | |||
64 | Currently, we support the log-rho multistep DEIS. We recommend to use `solver_order=2 / 3` while `solver_order=1` | ||
65 | reduces to DDIM. | ||
66 | |||
67 | We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space | ||
68 | diffusion models, you can set `thresholding=True` to use the dynamic thresholding. | ||
69 | |||
70 | [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | ||
71 | function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | ||
72 | [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | ||
73 | [`~SchedulerMixin.from_pretrained`] functions. | ||
74 | |||
75 | Args: | ||
76 | num_train_timesteps (`int`): number of diffusion steps used to train the model. | ||
77 | beta_start (`float`): the starting `beta` value of inference. | ||
78 | beta_end (`float`): the final `beta` value. | ||
79 | beta_schedule (`str`): | ||
80 | the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | ||
81 | `linear`, `scaled_linear`, or `squaredcos_cap_v2`. | ||
82 | trained_betas (`np.ndarray`, optional): | ||
83 | option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | ||
84 | solver_order (`int`, default `2`): | ||
85 | the order of DEIS; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided sampling, and | ||
86 | `solver_order=3` for unconditional sampling. | ||
87 | prediction_type (`str`, default `epsilon`): | ||
88 | indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`, | ||
89 | or `v-prediction`. | ||
90 | thresholding (`bool`, default `False`): | ||
91 | whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). | ||
92 | Note that the thresholding method is unsuitable for latent-space diffusion models (such as | ||
93 | stable-diffusion). | ||
94 | dynamic_thresholding_ratio (`float`, default `0.995`): | ||
95 | the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen | ||
96 | (https://arxiv.org/abs/2205.11487). | ||
97 | sample_max_value (`float`, default `1.0`): | ||
98 | the threshold value for dynamic thresholding. Valid woks when `thresholding=True` | ||
99 | algorithm_type (`str`, default `deis`): | ||
100 | the algorithm type for the solver. current we support multistep deis, we will add other variants of DEIS in | ||
101 | the future | ||
102 | lower_order_final (`bool`, default `True`): | ||
103 | whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically | ||
104 | find this trick can stabilize the sampling of DEIS for steps < 15, especially for steps <= 10. | ||
105 | |||
106 | """ | ||
107 | |||
108 | _compatibles = [e.name for e in KarrasDiffusionSchedulers] | ||
109 | order = 1 | ||
110 | |||
111 | @register_to_config | ||
112 | def __init__( | ||
113 | self, | ||
114 | num_train_timesteps: int = 1000, | ||
115 | beta_start: float = 0.0001, | ||
116 | beta_end: float = 0.02, | ||
117 | beta_schedule: str = "linear", | ||
118 | trained_betas: Optional[np.ndarray] = None, | ||
119 | solver_order: int = 2, | ||
120 | prediction_type: str = "epsilon", | ||
121 | thresholding: bool = False, | ||
122 | dynamic_thresholding_ratio: float = 0.995, | ||
123 | sample_max_value: float = 1.0, | ||
124 | algorithm_type: str = "deis", | ||
125 | solver_type: str = "logrho", | ||
126 | lower_order_final: bool = True, | ||
127 | ): | ||
128 | if trained_betas is not None: | ||
129 | self.betas = torch.tensor(trained_betas, dtype=torch.float32) | ||
130 | elif beta_schedule == "linear": | ||
131 | self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | ||
132 | elif beta_schedule == "scaled_linear": | ||
133 | # this schedule is very specific to the latent diffusion model. | ||
134 | self.betas = ( | ||
135 | torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | ||
136 | ) | ||
137 | elif beta_schedule == "squaredcos_cap_v2": | ||
138 | # Glide cosine schedule | ||
139 | self.betas = betas_for_alpha_bar(num_train_timesteps) | ||
140 | else: | ||
141 | raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | ||
142 | |||
143 | self.alphas = 1.0 - self.betas | ||
144 | self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | ||
145 | # Currently we only support VP-type noise schedule | ||
146 | self.alpha_t = torch.sqrt(self.alphas_cumprod) | ||
147 | self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) | ||
148 | self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) | ||
149 | |||
150 | # standard deviation of the initial noise distribution | ||
151 | self.init_noise_sigma = 1.0 | ||
152 | |||
153 | # settings for DEIS | ||
154 | if algorithm_type not in ["deis"]: | ||
155 | if algorithm_type in ["dpmsolver", "dpmsolver++"]: | ||
156 | algorithm_type = "deis" | ||
157 | else: | ||
158 | raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}") | ||
159 | |||
160 | if solver_type not in ["logrho"]: | ||
161 | if solver_type in ["midpoint", "heun"]: | ||
162 | solver_type = "logrho" | ||
163 | else: | ||
164 | raise NotImplementedError(f"solver type {solver_type} does is not implemented for {self.__class__}") | ||
165 | |||
166 | # setable values | ||
167 | self.num_inference_steps = None | ||
168 | timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() | ||
169 | self.timesteps = torch.from_numpy(timesteps) | ||
170 | self.model_outputs = [None] * solver_order | ||
171 | self.lower_order_nums = 0 | ||
172 | |||
173 | def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | ||
174 | """ | ||
175 | Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. | ||
176 | |||
177 | Args: | ||
178 | num_inference_steps (`int`): | ||
179 | the number of diffusion steps used when generating samples with a pre-trained model. | ||
180 | device (`str` or `torch.device`, optional): | ||
181 | the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | ||
182 | """ | ||
183 | self.num_inference_steps = num_inference_steps | ||
184 | timesteps = ( | ||
185 | np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1) | ||
186 | .round()[::-1][:-1] | ||
187 | .copy() | ||
188 | .astype(np.int64) | ||
189 | ) | ||
190 | self.timesteps = torch.from_numpy(timesteps).to(device) | ||
191 | self.model_outputs = [ | ||
192 | None, | ||
193 | ] * self.config.solver_order | ||
194 | self.lower_order_nums = 0 | ||
195 | |||
196 | def convert_model_output( | ||
197 | self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor | ||
198 | ) -> torch.FloatTensor: | ||
199 | """ | ||
200 | Convert the model output to the corresponding type that the algorithm DEIS needs. | ||
201 | |||
202 | Args: | ||
203 | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | ||
204 | timestep (`int`): current discrete timestep in the diffusion chain. | ||
205 | sample (`torch.FloatTensor`): | ||
206 | current instance of sample being created by diffusion process. | ||
207 | |||
208 | Returns: | ||
209 | `torch.FloatTensor`: the converted model output. | ||
210 | """ | ||
211 | if self.config.prediction_type == "epsilon": | ||
212 | alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | ||
213 | x0_pred = (sample - sigma_t * model_output) / alpha_t | ||
214 | elif self.config.prediction_type == "sample": | ||
215 | x0_pred = model_output | ||
216 | elif self.config.prediction_type == "v_prediction": | ||
217 | alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | ||
218 | x0_pred = alpha_t * sample - sigma_t * model_output | ||
219 | else: | ||
220 | raise ValueError( | ||
221 | f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | ||
222 | " `v_prediction` for the DEISMultistepScheduler." | ||
223 | ) | ||
224 | |||
225 | if self.config.thresholding: | ||
226 | # Dynamic thresholding in https://arxiv.org/abs/2205.11487 | ||
227 | orig_dtype = x0_pred.dtype | ||
228 | if orig_dtype not in [torch.float, torch.double]: | ||
229 | x0_pred = x0_pred.float() | ||
230 | dynamic_max_val = torch.quantile( | ||
231 | torch.abs(x0_pred).reshape((x0_pred.shape[0], -1)), self.config.dynamic_thresholding_ratio, dim=1 | ||
232 | ) | ||
233 | dynamic_max_val = torch.maximum( | ||
234 | dynamic_max_val, | ||
235 | self.config.sample_max_value * torch.ones_like(dynamic_max_val).to(dynamic_max_val.device), | ||
236 | )[(...,) + (None,) * (x0_pred.ndim - 1)] | ||
237 | x0_pred = torch.clamp(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val | ||
238 | x0_pred = x0_pred.type(orig_dtype) | ||
239 | |||
240 | if self.config.algorithm_type == "deis": | ||
241 | alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | ||
242 | return (sample - alpha_t * x0_pred) / sigma_t | ||
243 | else: | ||
244 | raise NotImplementedError("only support log-rho multistep deis now") | ||
245 | |||
246 | def deis_first_order_update( | ||
247 | self, | ||
248 | model_output: torch.FloatTensor, | ||
249 | timestep: int, | ||
250 | prev_timestep: int, | ||
251 | sample: torch.FloatTensor, | ||
252 | ) -> torch.FloatTensor: | ||
253 | """ | ||
254 | One step for the first-order DEIS (equivalent to DDIM). | ||
255 | |||
256 | Args: | ||
257 | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | ||
258 | timestep (`int`): current discrete timestep in the diffusion chain. | ||
259 | prev_timestep (`int`): previous discrete timestep in the diffusion chain. | ||
260 | sample (`torch.FloatTensor`): | ||
261 | current instance of sample being created by diffusion process. | ||
262 | |||
263 | Returns: | ||
264 | `torch.FloatTensor`: the sample tensor at the previous timestep. | ||
265 | """ | ||
266 | lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep] | ||
267 | alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep] | ||
268 | sigma_t, _ = self.sigma_t[prev_timestep], self.sigma_t[timestep] | ||
269 | h = lambda_t - lambda_s | ||
270 | if self.config.algorithm_type == "deis": | ||
271 | x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output | ||
272 | else: | ||
273 | raise NotImplementedError("only support log-rho multistep deis now") | ||
274 | return x_t | ||
275 | |||
276 | def multistep_deis_second_order_update( | ||
277 | self, | ||
278 | model_output_list: List[torch.FloatTensor], | ||
279 | timestep_list: List[int], | ||
280 | prev_timestep: int, | ||
281 | sample: torch.FloatTensor, | ||
282 | ) -> torch.FloatTensor: | ||
283 | """ | ||
284 | One step for the second-order multistep DEIS. | ||
285 | |||
286 | Args: | ||
287 | model_output_list (`List[torch.FloatTensor]`): | ||
288 | direct outputs from learned diffusion model at current and latter timesteps. | ||
289 | timestep (`int`): current and latter discrete timestep in the diffusion chain. | ||
290 | prev_timestep (`int`): previous discrete timestep in the diffusion chain. | ||
291 | sample (`torch.FloatTensor`): | ||
292 | current instance of sample being created by diffusion process. | ||
293 | |||
294 | Returns: | ||
295 | `torch.FloatTensor`: the sample tensor at the previous timestep. | ||
296 | """ | ||
297 | t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] | ||
298 | m0, m1 = model_output_list[-1], model_output_list[-2] | ||
299 | alpha_t, alpha_s0, alpha_s1 = self.alpha_t[t], self.alpha_t[s0], self.alpha_t[s1] | ||
300 | sigma_t, sigma_s0, sigma_s1 = self.sigma_t[t], self.sigma_t[s0], self.sigma_t[s1] | ||
301 | |||
302 | rho_t, rho_s0, rho_s1 = sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1 | ||
303 | |||
304 | if self.config.algorithm_type == "deis": | ||
305 | |||
306 | def ind_fn(t, b, c): | ||
307 | # Integrate[(log(t) - log(c)) / (log(b) - log(c)), {t}] | ||
308 | return t * (-np.log(c) + np.log(t) - 1) / (np.log(b) - np.log(c)) | ||
309 | |||
310 | coef1 = ind_fn(rho_t, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s0, rho_s1) | ||
311 | coef2 = ind_fn(rho_t, rho_s1, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s0) | ||
312 | |||
313 | x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1) | ||
314 | return x_t | ||
315 | else: | ||
316 | raise NotImplementedError("only support log-rho multistep deis now") | ||
317 | |||
318 | def multistep_deis_third_order_update( | ||
319 | self, | ||
320 | model_output_list: List[torch.FloatTensor], | ||
321 | timestep_list: List[int], | ||
322 | prev_timestep: int, | ||
323 | sample: torch.FloatTensor, | ||
324 | ) -> torch.FloatTensor: | ||
325 | """ | ||
326 | One step for the third-order multistep DEIS. | ||
327 | |||
328 | Args: | ||
329 | model_output_list (`List[torch.FloatTensor]`): | ||
330 | direct outputs from learned diffusion model at current and latter timesteps. | ||
331 | timestep (`int`): current and latter discrete timestep in the diffusion chain. | ||
332 | prev_timestep (`int`): previous discrete timestep in the diffusion chain. | ||
333 | sample (`torch.FloatTensor`): | ||
334 | current instance of sample being created by diffusion process. | ||
335 | |||
336 | Returns: | ||
337 | `torch.FloatTensor`: the sample tensor at the previous timestep. | ||
338 | """ | ||
339 | t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] | ||
340 | m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] | ||
341 | alpha_t, alpha_s0, alpha_s1, alpha_s2 = self.alpha_t[t], self.alpha_t[s0], self.alpha_t[s1], self.alpha_t[s2] | ||
342 | sigma_t, sigma_s0, sigma_s1, simga_s2 = self.sigma_t[t], self.sigma_t[s0], self.sigma_t[s1], self.sigma_t[s2] | ||
343 | rho_t, rho_s0, rho_s1, rho_s2 = ( | ||
344 | sigma_t / alpha_t, | ||
345 | sigma_s0 / alpha_s0, | ||
346 | sigma_s1 / alpha_s1, | ||
347 | simga_s2 / alpha_s2, | ||
348 | ) | ||
349 | |||
350 | if self.config.algorithm_type == "deis": | ||
351 | |||
352 | def ind_fn(t, b, c, d): | ||
353 | # Integrate[(log(t) - log(c))(log(t) - log(d)) / (log(b) - log(c))(log(b) - log(d)), {t}] | ||
354 | numerator = t * ( | ||
355 | np.log(c) * (np.log(d) - np.log(t) + 1) | ||
356 | - np.log(d) * np.log(t) | ||
357 | + np.log(d) | ||
358 | + np.log(t) ** 2 | ||
359 | - 2 * np.log(t) | ||
360 | + 2 | ||
361 | ) | ||
362 | denominator = (np.log(b) - np.log(c)) * (np.log(b) - np.log(d)) | ||
363 | return numerator / denominator | ||
364 | |||
365 | coef1 = ind_fn(rho_t, rho_s0, rho_s1, rho_s2) - ind_fn(rho_s0, rho_s0, rho_s1, rho_s2) | ||
366 | coef2 = ind_fn(rho_t, rho_s1, rho_s2, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s2, rho_s0) | ||
367 | coef3 = ind_fn(rho_t, rho_s2, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s2, rho_s0, rho_s1) | ||
368 | |||
369 | x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1 + coef3 * m2) | ||
370 | |||
371 | return x_t | ||
372 | else: | ||
373 | raise NotImplementedError("only support log-rho multistep deis now") | ||
374 | |||
375 | def step( | ||
376 | self, | ||
377 | model_output: torch.FloatTensor, | ||
378 | timestep: int, | ||
379 | sample: torch.FloatTensor, | ||
380 | return_dict: bool = True, | ||
381 | ) -> Union[SchedulerOutput, Tuple]: | ||
382 | """ | ||
383 | Step function propagating the sample with the multistep DEIS. | ||
384 | |||
385 | Args: | ||
386 | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | ||
387 | timestep (`int`): current discrete timestep in the diffusion chain. | ||
388 | sample (`torch.FloatTensor`): | ||
389 | current instance of sample being created by diffusion process. | ||
390 | return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | ||
391 | |||
392 | Returns: | ||
393 | [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is | ||
394 | True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | ||
395 | |||
396 | """ | ||
397 | if self.num_inference_steps is None: | ||
398 | raise ValueError( | ||
399 | "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | ||
400 | ) | ||
401 | |||
402 | if isinstance(timestep, torch.Tensor): | ||
403 | timestep = timestep.to(self.timesteps.device) | ||
404 | step_index = (self.timesteps == timestep).nonzero() | ||
405 | if len(step_index) == 0: | ||
406 | step_index = len(self.timesteps) - 1 | ||
407 | else: | ||
408 | step_index = step_index.item() | ||
409 | prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1] | ||
410 | lower_order_final = ( | ||
411 | (step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15 | ||
412 | ) | ||
413 | lower_order_second = ( | ||
414 | (step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15 | ||
415 | ) | ||
416 | |||
417 | model_output = self.convert_model_output(model_output, timestep, sample) | ||
418 | for i in range(self.config.solver_order - 1): | ||
419 | self.model_outputs[i] = self.model_outputs[i + 1] | ||
420 | self.model_outputs[-1] = model_output | ||
421 | |||
422 | if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: | ||
423 | prev_sample = self.deis_first_order_update(model_output, timestep, prev_timestep, sample) | ||
424 | elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: | ||
425 | timestep_list = [self.timesteps[step_index - 1], timestep] | ||
426 | prev_sample = self.multistep_deis_second_order_update( | ||
427 | self.model_outputs, timestep_list, prev_timestep, sample | ||
428 | ) | ||
429 | else: | ||
430 | timestep_list = [self.timesteps[step_index - 2], self.timesteps[step_index - 1], timestep] | ||
431 | prev_sample = self.multistep_deis_third_order_update( | ||
432 | self.model_outputs, timestep_list, prev_timestep, sample | ||
433 | ) | ||
434 | |||
435 | if self.lower_order_nums < self.config.solver_order: | ||
436 | self.lower_order_nums += 1 | ||
437 | |||
438 | if not return_dict: | ||
439 | return (prev_sample,) | ||
440 | |||
441 | return SchedulerOutput(prev_sample=prev_sample) | ||
442 | |||
443 | def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: | ||
444 | """ | ||
445 | Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | ||
446 | current timestep. | ||
447 | |||
448 | Args: | ||
449 | sample (`torch.FloatTensor`): input sample | ||
450 | |||
451 | Returns: | ||
452 | `torch.FloatTensor`: scaled input sample | ||
453 | """ | ||
454 | return sample | ||
455 | |||
456 | def add_noise( | ||
457 | self, | ||
458 | original_samples: torch.FloatTensor, | ||
459 | noise: torch.FloatTensor, | ||
460 | timesteps: torch.IntTensor, | ||
461 | ) -> torch.FloatTensor: | ||
462 | # Make sure alphas_cumprod and timestep have same device and dtype as original_samples | ||
463 | self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) | ||
464 | timesteps = timesteps.to(original_samples.device) | ||
465 | |||
466 | sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 | ||
467 | sqrt_alpha_prod = sqrt_alpha_prod.flatten() | ||
468 | while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | ||
469 | sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | ||
470 | |||
471 | sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 | ||
472 | sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | ||
473 | while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | ||
474 | sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | ||
475 | |||
476 | noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | ||
477 | return noisy_samples | ||
478 | |||
479 | def get_velocity( | ||
480 | self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor | ||
481 | ) -> torch.FloatTensor: | ||
482 | # Make sure alphas_cumprod and timestep have same device and dtype as sample | ||
483 | self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype) | ||
484 | timesteps = timesteps.to(sample.device) | ||
485 | |||
486 | sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 | ||
487 | sqrt_alpha_prod = sqrt_alpha_prod.flatten() | ||
488 | while len(sqrt_alpha_prod.shape) < len(sample.shape): | ||
489 | sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | ||
490 | |||
491 | sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 | ||
492 | sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | ||
493 | while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): | ||
494 | sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | ||
495 | |||
496 | velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample | ||
497 | return velocity | ||
498 | |||
499 | def __len__(self): | ||
500 | return self.config.num_train_timesteps | ||