diff options
Diffstat (limited to 'training/strategy')
-rw-r--r-- | training/strategy/ti.py | 164 |
1 files changed, 164 insertions, 0 deletions
diff --git a/training/strategy/ti.py b/training/strategy/ti.py new file mode 100644 index 0000000..83dc566 --- /dev/null +++ b/training/strategy/ti.py | |||
@@ -0,0 +1,164 @@ | |||
1 | from contextlib import nullcontext | ||
2 | from typing import Optional | ||
3 | from functools import partial | ||
4 | from contextlib import contextmanager, nullcontext | ||
5 | from pathlib import Path | ||
6 | |||
7 | import torch | ||
8 | from torch.utils.data import DataLoader | ||
9 | |||
10 | from accelerate import Accelerator | ||
11 | from transformers import CLIPTextModel | ||
12 | from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler | ||
13 | |||
14 | from slugify import slugify | ||
15 | |||
16 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
17 | from training.util import EMAModel | ||
18 | from training.functional import save_samples | ||
19 | |||
20 | |||
21 | def textual_inversion_strategy( | ||
22 | accelerator: Accelerator, | ||
23 | unet: UNet2DConditionModel, | ||
24 | text_encoder: CLIPTextModel, | ||
25 | tokenizer: MultiCLIPTokenizer, | ||
26 | vae: AutoencoderKL, | ||
27 | sample_scheduler: DPMSolverMultistepScheduler, | ||
28 | train_dataloader: DataLoader, | ||
29 | val_dataloader: DataLoader, | ||
30 | dtype: torch.dtype, | ||
31 | output_dir: Path, | ||
32 | seed: int, | ||
33 | placeholder_tokens: list[str], | ||
34 | placeholder_token_ids: list[list[int]], | ||
35 | learning_rate: float, | ||
36 | gradient_checkpointing: bool = False, | ||
37 | use_emb_decay: bool = False, | ||
38 | emb_decay_target: float = 0.4, | ||
39 | emb_decay_factor: float = 1, | ||
40 | emb_decay_start: float = 1e-4, | ||
41 | use_ema: bool = False, | ||
42 | ema_inv_gamma: float = 1.0, | ||
43 | ema_power: int = 1, | ||
44 | ema_max_decay: float = 0.9999, | ||
45 | sample_batch_size: int = 1, | ||
46 | sample_num_batches: int = 1, | ||
47 | sample_num_steps: int = 20, | ||
48 | sample_guidance_scale: float = 7.5, | ||
49 | sample_image_size: Optional[int] = None, | ||
50 | ): | ||
51 | save_samples_ = partial( | ||
52 | save_samples, | ||
53 | accelerator=accelerator, | ||
54 | unet=unet, | ||
55 | text_encoder=text_encoder, | ||
56 | tokenizer=tokenizer, | ||
57 | vae=vae, | ||
58 | sample_scheduler=sample_scheduler, | ||
59 | train_dataloader=train_dataloader, | ||
60 | val_dataloader=val_dataloader, | ||
61 | dtype=dtype, | ||
62 | output_dir=output_dir, | ||
63 | seed=seed, | ||
64 | batch_size=sample_batch_size, | ||
65 | num_batches=sample_num_batches, | ||
66 | num_steps=sample_num_steps, | ||
67 | guidance_scale=sample_guidance_scale, | ||
68 | image_size=sample_image_size, | ||
69 | ) | ||
70 | |||
71 | if use_ema: | ||
72 | ema_embeddings = EMAModel( | ||
73 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
74 | inv_gamma=ema_inv_gamma, | ||
75 | power=ema_power, | ||
76 | max_value=ema_max_decay, | ||
77 | ) | ||
78 | else: | ||
79 | ema_embeddings = None | ||
80 | |||
81 | def on_prepare(): | ||
82 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) | ||
83 | |||
84 | if use_ema: | ||
85 | ema_embeddings.to(accelerator.device) | ||
86 | |||
87 | if gradient_checkpointing: | ||
88 | unet.train() | ||
89 | |||
90 | @contextmanager | ||
91 | def on_train(epoch: int): | ||
92 | try: | ||
93 | tokenizer.train() | ||
94 | yield | ||
95 | finally: | ||
96 | pass | ||
97 | |||
98 | @contextmanager | ||
99 | def on_eval(): | ||
100 | try: | ||
101 | tokenizer.eval() | ||
102 | |||
103 | ema_context = ema_embeddings.apply_temporary( | ||
104 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if use_ema else nullcontext() | ||
105 | |||
106 | with ema_context: | ||
107 | yield | ||
108 | finally: | ||
109 | pass | ||
110 | |||
111 | @torch.no_grad() | ||
112 | def on_after_optimize(lr: float): | ||
113 | if use_emb_decay: | ||
114 | text_encoder.text_model.embeddings.normalize( | ||
115 | emb_decay_target, | ||
116 | min(1.0, max(0.0, emb_decay_factor * ((lr - emb_decay_start) / (learning_rate - emb_decay_start)))) | ||
117 | ) | ||
118 | |||
119 | if use_ema: | ||
120 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
121 | |||
122 | def on_log(): | ||
123 | if use_ema: | ||
124 | return {"ema_decay": ema_embeddings.decay} | ||
125 | return {} | ||
126 | |||
127 | @torch.no_grad() | ||
128 | def on_checkpoint(step, postfix): | ||
129 | print(f"Saving checkpoint for step {step}...") | ||
130 | |||
131 | checkpoints_path = output_dir.joinpath("checkpoints") | ||
132 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
133 | |||
134 | text_encoder = accelerator.unwrap_model(text_encoder) | ||
135 | |||
136 | ema_context = ema_embeddings.apply_temporary( | ||
137 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
138 | ) if ema_embeddings is not None else nullcontext() | ||
139 | |||
140 | with ema_context: | ||
141 | for (token, ids) in zip(placeholder_tokens, placeholder_token_ids): | ||
142 | text_encoder.text_model.embeddings.save_embed( | ||
143 | ids, | ||
144 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
145 | ) | ||
146 | |||
147 | @torch.no_grad() | ||
148 | def on_sample(step): | ||
149 | ema_context = ema_embeddings.apply_temporary( | ||
150 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
151 | ) if ema_embeddings is not None else nullcontext() | ||
152 | |||
153 | with ema_context: | ||
154 | save_samples_(step=step) | ||
155 | |||
156 | return { | ||
157 | "on_prepare": on_prepare, | ||
158 | "on_train": on_train, | ||
159 | "on_eval": on_eval, | ||
160 | "on_after_optimize": on_after_optimize, | ||
161 | "on_log": on_log, | ||
162 | "on_checkpoint": on_checkpoint, | ||
163 | "on_sample": on_sample, | ||
164 | } | ||