diff options
Diffstat (limited to 'training/strategy')
-rw-r--r-- | training/strategy/dreambooth.py | 10 | ||||
-rw-r--r-- | training/strategy/ti.py | 19 |
2 files changed, 21 insertions, 8 deletions
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 93c81cb..bc26ee6 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
@@ -15,10 +15,10 @@ from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepSch | |||
15 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 15 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
16 | from models.clip.tokenizer import MultiCLIPTokenizer | 16 | from models.clip.tokenizer import MultiCLIPTokenizer |
17 | from training.util import EMAModel | 17 | from training.util import EMAModel |
18 | from training.functional import TrainingCallbacks, save_samples | 18 | from training.functional import TrainingStrategy, TrainingCallbacks, save_samples |
19 | 19 | ||
20 | 20 | ||
21 | def dreambooth_strategy( | 21 | def dreambooth_strategy_callbacks( |
22 | accelerator: Accelerator, | 22 | accelerator: Accelerator, |
23 | unet: UNet2DConditionModel, | 23 | unet: UNet2DConditionModel, |
24 | text_encoder: CLIPTextModel, | 24 | text_encoder: CLIPTextModel, |
@@ -185,3 +185,9 @@ def dreambooth_strategy( | |||
185 | on_checkpoint=on_checkpoint, | 185 | on_checkpoint=on_checkpoint, |
186 | on_sample=on_sample, | 186 | on_sample=on_sample, |
187 | ) | 187 | ) |
188 | |||
189 | |||
190 | dreambooth_strategy = TrainingStrategy( | ||
191 | callbacks=dreambooth_strategy_callbacks, | ||
192 | prepare_unet=True | ||
193 | ) | ||
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 00f3529..597abd0 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
@@ -15,10 +15,10 @@ from slugify import slugify | |||
15 | 15 | ||
16 | from models.clip.tokenizer import MultiCLIPTokenizer | 16 | from models.clip.tokenizer import MultiCLIPTokenizer |
17 | from training.util import EMAModel | 17 | from training.util import EMAModel |
18 | from training.functional import TrainingCallbacks, save_samples | 18 | from training.functional import TrainingStrategy, TrainingCallbacks, save_samples |
19 | 19 | ||
20 | 20 | ||
21 | def textual_inversion_strategy( | 21 | def textual_inversion_strategy_callbacks( |
22 | accelerator: Accelerator, | 22 | accelerator: Accelerator, |
23 | unet: UNet2DConditionModel, | 23 | unet: UNet2DConditionModel, |
24 | text_encoder: CLIPTextModel, | 24 | text_encoder: CLIPTextModel, |
@@ -119,17 +119,18 @@ def textual_inversion_strategy( | |||
119 | with ema_context(): | 119 | with ema_context(): |
120 | yield | 120 | yield |
121 | 121 | ||
122 | @torch.no_grad() | ||
123 | def on_after_optimize(lr: float): | 122 | def on_after_optimize(lr: float): |
123 | if use_ema: | ||
124 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
125 | |||
126 | @torch.no_grad() | ||
127 | def on_after_epoch(lr: float): | ||
124 | if use_emb_decay: | 128 | if use_emb_decay: |
125 | text_encoder.text_model.embeddings.normalize( | 129 | text_encoder.text_model.embeddings.normalize( |
126 | emb_decay_target, | 130 | emb_decay_target, |
127 | min(1.0, max(0.0, emb_decay_factor * ((lr - emb_decay_start) / (learning_rate - emb_decay_start)))) | 131 | min(1.0, max(0.0, emb_decay_factor * ((lr - emb_decay_start) / (learning_rate - emb_decay_start)))) |
128 | ) | 132 | ) |
129 | 133 | ||
130 | if use_ema: | ||
131 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
132 | |||
133 | def on_log(): | 134 | def on_log(): |
134 | if use_ema: | 135 | if use_ema: |
135 | return {"ema_decay": ema_embeddings.decay} | 136 | return {"ema_decay": ema_embeddings.decay} |
@@ -157,7 +158,13 @@ def textual_inversion_strategy( | |||
157 | on_train=on_train, | 158 | on_train=on_train, |
158 | on_eval=on_eval, | 159 | on_eval=on_eval, |
159 | on_after_optimize=on_after_optimize, | 160 | on_after_optimize=on_after_optimize, |
161 | on_after_epoch=on_after_epoch, | ||
160 | on_log=on_log, | 162 | on_log=on_log, |
161 | on_checkpoint=on_checkpoint, | 163 | on_checkpoint=on_checkpoint, |
162 | on_sample=on_sample, | 164 | on_sample=on_sample, |
163 | ) | 165 | ) |
166 | |||
167 | |||
168 | textual_inversion_strategy = TrainingStrategy( | ||
169 | callbacks=textual_inversion_strategy_callbacks, | ||
170 | ) | ||