diff options
Diffstat (limited to 'training/strategy')
-rw-r--r-- | training/strategy/dreambooth.py | 29 | ||||
-rw-r--r-- | training/strategy/lora.py | 41 | ||||
-rw-r--r-- | training/strategy/ti.py | 27 |
3 files changed, 65 insertions, 32 deletions
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index e6fcc89..88b441b 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
@@ -29,7 +29,7 @@ def dreambooth_strategy_callbacks( | |||
29 | sample_output_dir: Path, | 29 | sample_output_dir: Path, |
30 | checkpoint_output_dir: Path, | 30 | checkpoint_output_dir: Path, |
31 | seed: int, | 31 | seed: int, |
32 | train_text_encoder_epochs: int, | 32 | train_text_encoder_cycles: int, |
33 | max_grad_norm: float = 1.0, | 33 | max_grad_norm: float = 1.0, |
34 | use_ema: bool = False, | 34 | use_ema: bool = False, |
35 | ema_inv_gamma: float = 1.0, | 35 | ema_inv_gamma: float = 1.0, |
@@ -85,15 +85,13 @@ def dreambooth_strategy_callbacks( | |||
85 | return nullcontext() | 85 | return nullcontext() |
86 | 86 | ||
87 | @contextmanager | 87 | @contextmanager |
88 | def on_train(epoch: int): | 88 | def on_train(cycle: int): |
89 | unet.train() | 89 | unet.train() |
90 | tokenizer.train() | 90 | tokenizer.train() |
91 | 91 | ||
92 | if epoch < train_text_encoder_epochs: | 92 | if cycle < train_text_encoder_cycles: |
93 | text_encoder.train() | 93 | text_encoder.train() |
94 | elif epoch == train_text_encoder_epochs: | 94 | tokenizer.train() |
95 | text_encoder.requires_grad_(False) | ||
96 | text_encoder.eval() | ||
97 | 95 | ||
98 | yield | 96 | yield |
99 | 97 | ||
@@ -106,9 +104,9 @@ def dreambooth_strategy_callbacks( | |||
106 | with ema_context(): | 104 | with ema_context(): |
107 | yield | 105 | yield |
108 | 106 | ||
109 | def on_before_optimize(epoch: int): | 107 | def on_before_optimize(cycle: int): |
110 | params_to_clip = [unet.parameters()] | 108 | params_to_clip = [unet.parameters()] |
111 | if epoch < train_text_encoder_epochs: | 109 | if cycle < train_text_encoder_cycles: |
112 | params_to_clip.append(text_encoder.parameters()) | 110 | params_to_clip.append(text_encoder.parameters()) |
113 | accelerator.clip_grad_norm_(itertools.chain(*params_to_clip), max_grad_norm) | 111 | accelerator.clip_grad_norm_(itertools.chain(*params_to_clip), max_grad_norm) |
114 | 112 | ||
@@ -189,8 +187,16 @@ def dreambooth_prepare( | |||
189 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 187 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, |
190 | **kwargs | 188 | **kwargs |
191 | ): | 189 | ): |
192 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | 190 | ( |
193 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler) | 191 | text_encoder, |
192 | unet, | ||
193 | optimizer, | ||
194 | train_dataloader, | ||
195 | val_dataloader, | ||
196 | lr_scheduler, | ||
197 | ) = accelerator.prepare( | ||
198 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
199 | ) | ||
194 | 200 | ||
195 | text_encoder.text_model.embeddings.requires_grad_(False) | 201 | text_encoder.text_model.embeddings.requires_grad_(False) |
196 | 202 | ||
@@ -198,6 +204,5 @@ def dreambooth_prepare( | |||
198 | 204 | ||
199 | 205 | ||
200 | dreambooth_strategy = TrainingStrategy( | 206 | dreambooth_strategy = TrainingStrategy( |
201 | callbacks=dreambooth_strategy_callbacks, | 207 | callbacks=dreambooth_strategy_callbacks, prepare=dreambooth_prepare |
202 | prepare=dreambooth_prepare | ||
203 | ) | 208 | ) |
diff --git a/training/strategy/lora.py b/training/strategy/lora.py index f942b76..14e3384 100644 --- a/training/strategy/lora.py +++ b/training/strategy/lora.py | |||
@@ -81,7 +81,7 @@ def lora_strategy_callbacks( | |||
81 | tokenizer.eval() | 81 | tokenizer.eval() |
82 | yield | 82 | yield |
83 | 83 | ||
84 | def on_before_optimize(epoch: int): | 84 | def on_before_optimize(cycle: int): |
85 | if not pti_mode: | 85 | if not pti_mode: |
86 | accelerator.clip_grad_norm_( | 86 | accelerator.clip_grad_norm_( |
87 | itertools.chain( | 87 | itertools.chain( |
@@ -89,7 +89,7 @@ def lora_strategy_callbacks( | |||
89 | text_encoder.text_model.encoder.parameters(), | 89 | text_encoder.text_model.encoder.parameters(), |
90 | text_encoder.text_model.final_layer_norm.parameters(), | 90 | text_encoder.text_model.final_layer_norm.parameters(), |
91 | ), | 91 | ), |
92 | max_grad_norm | 92 | max_grad_norm, |
93 | ) | 93 | ) |
94 | 94 | ||
95 | if len(placeholder_tokens) != 0 and use_emb_decay: | 95 | if len(placeholder_tokens) != 0 and use_emb_decay: |
@@ -108,7 +108,9 @@ def lora_strategy_callbacks( | |||
108 | 108 | ||
109 | if lambda_ != 0: | 109 | if lambda_ != 0: |
110 | norm = w[:, :].norm(dim=-1, keepdim=True) | 110 | norm = w[:, :].norm(dim=-1, keepdim=True) |
111 | w[:].add_((w[:] / norm.clamp_min(1e-12)) * lambda_ * (emb_decay_target - norm)) | 111 | w[:].add_( |
112 | (w[:] / norm.clamp_min(1e-12)) * lambda_ * (emb_decay_target - norm) | ||
113 | ) | ||
112 | 114 | ||
113 | @torch.no_grad() | 115 | @torch.no_grad() |
114 | def on_checkpoint(step, postfix): | 116 | def on_checkpoint(step, postfix): |
@@ -128,25 +130,32 @@ def lora_strategy_callbacks( | |||
128 | 130 | ||
129 | if not pti_mode: | 131 | if not pti_mode: |
130 | lora_config = {} | 132 | lora_config = {} |
131 | state_dict = get_peft_model_state_dict(unet_, state_dict=accelerator.get_state_dict(unet_)) | 133 | state_dict = get_peft_model_state_dict( |
134 | unet_, state_dict=accelerator.get_state_dict(unet_) | ||
135 | ) | ||
132 | lora_config["peft_config"] = unet_.get_peft_config_as_dict(inference=True) | 136 | lora_config["peft_config"] = unet_.get_peft_config_as_dict(inference=True) |
133 | 137 | ||
134 | text_encoder_state_dict = get_peft_model_state_dict( | 138 | text_encoder_state_dict = get_peft_model_state_dict( |
135 | text_encoder_, state_dict=accelerator.get_state_dict(text_encoder_) | 139 | text_encoder_, state_dict=accelerator.get_state_dict(text_encoder_) |
136 | ) | 140 | ) |
137 | text_encoder_state_dict = {f"text_encoder_{k}": v for k, v in text_encoder_state_dict.items()} | 141 | text_encoder_state_dict = { |
142 | f"text_encoder_{k}": v for k, v in text_encoder_state_dict.items() | ||
143 | } | ||
138 | state_dict.update(text_encoder_state_dict) | 144 | state_dict.update(text_encoder_state_dict) |
139 | lora_config["text_encoder_peft_config"] = text_encoder_.get_peft_config_as_dict(inference=True) | 145 | lora_config[ |
146 | "text_encoder_peft_config" | ||
147 | ] = text_encoder_.get_peft_config_as_dict(inference=True) | ||
140 | 148 | ||
141 | if len(placeholder_tokens) != 0: | 149 | if len(placeholder_tokens) != 0: |
142 | ti_state_dict = { | 150 | ti_state_dict = { |
143 | f"ti_${token}": text_encoder.text_model.embeddings.get_embed(ids) | 151 | f"ti_${token}": text_encoder.text_model.embeddings.get_embed(ids) |
144 | for (token, ids) | 152 | for (token, ids) in zip(placeholder_tokens, placeholder_token_ids) |
145 | in zip(placeholder_tokens, placeholder_token_ids) | ||
146 | } | 153 | } |
147 | state_dict.update(ti_state_dict) | 154 | state_dict.update(ti_state_dict) |
148 | 155 | ||
149 | save_file(state_dict, checkpoint_output_dir / f"{step}_{postfix}.safetensors") | 156 | save_file( |
157 | state_dict, checkpoint_output_dir / f"{step}_{postfix}.safetensors" | ||
158 | ) | ||
150 | with open(checkpoint_output_dir / "lora_config.json", "w") as f: | 159 | with open(checkpoint_output_dir / "lora_config.json", "w") as f: |
151 | json.dump(lora_config, f) | 160 | json.dump(lora_config, f) |
152 | 161 | ||
@@ -185,10 +194,18 @@ def lora_prepare( | |||
185 | train_dataloader: DataLoader, | 194 | train_dataloader: DataLoader, |
186 | val_dataloader: Optional[DataLoader], | 195 | val_dataloader: Optional[DataLoader], |
187 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 196 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, |
188 | **kwargs | 197 | **kwargs, |
189 | ): | 198 | ): |
190 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | 199 | ( |
191 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler) | 200 | text_encoder, |
201 | unet, | ||
202 | optimizer, | ||
203 | train_dataloader, | ||
204 | val_dataloader, | ||
205 | lr_scheduler, | ||
206 | ) = accelerator.prepare( | ||
207 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
208 | ) | ||
192 | 209 | ||
193 | # text_encoder.text_model.embeddings.token_embedding.requires_grad_(True) | 210 | # text_encoder.text_model.embeddings.token_embedding.requires_grad_(True) |
194 | 211 | ||
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 6bc1d7d..7373982 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
@@ -104,7 +104,7 @@ def textual_inversion_strategy_callbacks( | |||
104 | yield | 104 | yield |
105 | 105 | ||
106 | @torch.no_grad() | 106 | @torch.no_grad() |
107 | def on_before_optimize(epoch: int): | 107 | def on_before_optimize(cycle: int): |
108 | if use_emb_decay: | 108 | if use_emb_decay: |
109 | params = [ | 109 | params = [ |
110 | p | 110 | p |
@@ -116,7 +116,9 @@ def textual_inversion_strategy_callbacks( | |||
116 | @torch.no_grad() | 116 | @torch.no_grad() |
117 | def on_after_optimize(w, lrs: dict[str, float]): | 117 | def on_after_optimize(w, lrs: dict[str, float]): |
118 | if ema_embeddings is not None: | 118 | if ema_embeddings is not None: |
119 | ema_embeddings.step(text_encoder.text_model.embeddings.token_embedding.parameters()) | 119 | ema_embeddings.step( |
120 | text_encoder.text_model.embeddings.token_embedding.parameters() | ||
121 | ) | ||
120 | 122 | ||
121 | if use_emb_decay and w is not None: | 123 | if use_emb_decay and w is not None: |
122 | lr = lrs["emb"] if "emb" in lrs else lrs["0"] | 124 | lr = lrs["emb"] if "emb" in lrs else lrs["0"] |
@@ -124,7 +126,9 @@ def textual_inversion_strategy_callbacks( | |||
124 | 126 | ||
125 | if lambda_ != 0: | 127 | if lambda_ != 0: |
126 | norm = w[:, :].norm(dim=-1, keepdim=True) | 128 | norm = w[:, :].norm(dim=-1, keepdim=True) |
127 | w[:].add_((w[:] / norm.clamp_min(1e-12)) * lambda_ * (emb_decay_target - norm)) | 129 | w[:].add_( |
130 | (w[:] / norm.clamp_min(1e-12)) * lambda_ * (emb_decay_target - norm) | ||
131 | ) | ||
128 | 132 | ||
129 | def on_log(): | 133 | def on_log(): |
130 | if ema_embeddings is not None: | 134 | if ema_embeddings is not None: |
@@ -136,10 +140,10 @@ def textual_inversion_strategy_callbacks( | |||
136 | print(f"Saving checkpoint for step {step}...") | 140 | print(f"Saving checkpoint for step {step}...") |
137 | 141 | ||
138 | with ema_context(): | 142 | with ema_context(): |
139 | for (token, ids) in zip(placeholder_tokens, placeholder_token_ids): | 143 | for token, ids in zip(placeholder_tokens, placeholder_token_ids): |
140 | text_encoder.text_model.embeddings.save_embed( | 144 | text_encoder.text_model.embeddings.save_embed( |
141 | ids, | 145 | ids, |
142 | checkpoint_output_dir / f"{slugify(token)}_{step}_{postfix}.bin" | 146 | checkpoint_output_dir / f"{slugify(token)}_{step}_{postfix}.bin", |
143 | ) | 147 | ) |
144 | 148 | ||
145 | @torch.no_grad() | 149 | @torch.no_grad() |
@@ -183,7 +187,7 @@ def textual_inversion_prepare( | |||
183 | val_dataloader: Optional[DataLoader], | 187 | val_dataloader: Optional[DataLoader], |
184 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 188 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, |
185 | gradient_checkpointing: bool = False, | 189 | gradient_checkpointing: bool = False, |
186 | **kwargs | 190 | **kwargs, |
187 | ): | 191 | ): |
188 | weight_dtype = torch.float32 | 192 | weight_dtype = torch.float32 |
189 | if accelerator.state.mixed_precision == "fp16": | 193 | if accelerator.state.mixed_precision == "fp16": |
@@ -191,8 +195,15 @@ def textual_inversion_prepare( | |||
191 | elif accelerator.state.mixed_precision == "bf16": | 195 | elif accelerator.state.mixed_precision == "bf16": |
192 | weight_dtype = torch.bfloat16 | 196 | weight_dtype = torch.bfloat16 |
193 | 197 | ||
194 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | 198 | ( |
195 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler) | 199 | text_encoder, |
200 | optimizer, | ||
201 | train_dataloader, | ||
202 | val_dataloader, | ||
203 | lr_scheduler, | ||
204 | ) = accelerator.prepare( | ||
205 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
206 | ) | ||
196 | 207 | ||
197 | unet.to(accelerator.device, dtype=weight_dtype) | 208 | unet.to(accelerator.device, dtype=weight_dtype) |
198 | unet.requires_grad_(False) | 209 | unet.requires_grad_(False) |