diff options
Diffstat (limited to 'training/strategy')
-rw-r--r-- | training/strategy/dreambooth.py | 10 |
1 files changed, 10 insertions, 0 deletions
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 88b441b..43fe838 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
@@ -1,4 +1,5 @@ | |||
1 | from typing import Optional | 1 | from typing import Optional |
2 | from types import MethodType | ||
2 | from functools import partial | 3 | from functools import partial |
3 | from contextlib import contextmanager, nullcontext | 4 | from contextlib import contextmanager, nullcontext |
4 | from pathlib import Path | 5 | from pathlib import Path |
@@ -130,6 +131,9 @@ def dreambooth_strategy_callbacks( | |||
130 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=False) | 131 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=False) |
131 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=False) | 132 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=False) |
132 | 133 | ||
134 | unet_.forward = MethodType(unet_.forward, unet_) | ||
135 | text_encoder_.forward = MethodType(text_encoder_.forward, text_encoder_) | ||
136 | |||
133 | with ema_context(): | 137 | with ema_context(): |
134 | pipeline = VlpnStableDiffusion( | 138 | pipeline = VlpnStableDiffusion( |
135 | text_encoder=text_encoder_, | 139 | text_encoder=text_encoder_, |
@@ -185,6 +189,7 @@ def dreambooth_prepare( | |||
185 | train_dataloader: DataLoader, | 189 | train_dataloader: DataLoader, |
186 | val_dataloader: Optional[DataLoader], | 190 | val_dataloader: Optional[DataLoader], |
187 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 191 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, |
192 | text_encoder_unfreeze_last_n_layers: int = 2, | ||
188 | **kwargs | 193 | **kwargs |
189 | ): | 194 | ): |
190 | ( | 195 | ( |
@@ -198,6 +203,11 @@ def dreambooth_prepare( | |||
198 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | 203 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler |
199 | ) | 204 | ) |
200 | 205 | ||
206 | for layer in text_encoder.text_model.encoder.layers[ | ||
207 | : (-1 * text_encoder_unfreeze_last_n_layers) | ||
208 | ]: | ||
209 | layer.requires_grad_(False) | ||
210 | |||
201 | text_encoder.text_model.embeddings.requires_grad_(False) | 211 | text_encoder.text_model.embeddings.requires_grad_(False) |
202 | 212 | ||
203 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | 213 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler |