diff options
Diffstat (limited to 'training')
| -rw-r--r-- | training/functional.py | 19 | ||||
| -rw-r--r-- | training/strategy/dreambooth.py | 10 | ||||
| -rw-r--r-- | training/strategy/ti.py | 19 | ||||
| -rw-r--r-- | training/util.py | 11 |
4 files changed, 38 insertions, 21 deletions
diff --git a/training/functional.py b/training/functional.py index 3d27380..7a3e821 100644 --- a/training/functional.py +++ b/training/functional.py | |||
| @@ -39,11 +39,18 @@ class TrainingCallbacks(): | |||
| 39 | on_train: Callable[[int], _GeneratorContextManager] = const(nullcontext()) | 39 | on_train: Callable[[int], _GeneratorContextManager] = const(nullcontext()) |
| 40 | on_before_optimize: Callable[[int], None] = const() | 40 | on_before_optimize: Callable[[int], None] = const() |
| 41 | on_after_optimize: Callable[[float], None] = const() | 41 | on_after_optimize: Callable[[float], None] = const() |
| 42 | on_after_epoch: Callable[[float], None] = const() | ||
| 42 | on_eval: Callable[[], _GeneratorContextManager] = const(nullcontext()) | 43 | on_eval: Callable[[], _GeneratorContextManager] = const(nullcontext()) |
| 43 | on_sample: Callable[[int], None] = const() | 44 | on_sample: Callable[[int], None] = const() |
| 44 | on_checkpoint: Callable[[int, str], None] = const() | 45 | on_checkpoint: Callable[[int, str], None] = const() |
| 45 | 46 | ||
| 46 | 47 | ||
| 48 | @dataclass | ||
| 49 | class TrainingStrategy(): | ||
| 50 | callbacks: Callable[..., TrainingCallbacks] | ||
| 51 | prepare_unet: bool = False | ||
| 52 | |||
| 53 | |||
| 47 | def make_grid(images, rows, cols): | 54 | def make_grid(images, rows, cols): |
| 48 | w, h = images[0].size | 55 | w, h = images[0].size |
| 49 | grid = Image.new('RGB', size=(cols*w, rows*h)) | 56 | grid = Image.new('RGB', size=(cols*w, rows*h)) |
| @@ -373,6 +380,7 @@ def train_loop( | |||
| 373 | on_train = callbacks.on_train | 380 | on_train = callbacks.on_train |
| 374 | on_before_optimize = callbacks.on_before_optimize | 381 | on_before_optimize = callbacks.on_before_optimize |
| 375 | on_after_optimize = callbacks.on_after_optimize | 382 | on_after_optimize = callbacks.on_after_optimize |
| 383 | on_after_epoch = callbacks.on_after_epoch | ||
| 376 | on_eval = callbacks.on_eval | 384 | on_eval = callbacks.on_eval |
| 377 | on_sample = callbacks.on_sample | 385 | on_sample = callbacks.on_sample |
| 378 | on_checkpoint = callbacks.on_checkpoint | 386 | on_checkpoint = callbacks.on_checkpoint |
| @@ -434,6 +442,8 @@ def train_loop( | |||
| 434 | 442 | ||
| 435 | accelerator.wait_for_everyone() | 443 | accelerator.wait_for_everyone() |
| 436 | 444 | ||
| 445 | on_after_epoch(lr_scheduler.get_last_lr()[0]) | ||
| 446 | |||
| 437 | if val_dataloader is not None: | 447 | if val_dataloader is not None: |
| 438 | model.eval() | 448 | model.eval() |
| 439 | 449 | ||
| @@ -512,8 +522,7 @@ def train( | |||
| 512 | val_dataloader: Optional[DataLoader], | 522 | val_dataloader: Optional[DataLoader], |
| 513 | optimizer: torch.optim.Optimizer, | 523 | optimizer: torch.optim.Optimizer, |
| 514 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 524 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, |
| 515 | callbacks_fn: Callable[..., TrainingCallbacks], | 525 | strategy: TrainingStrategy, |
| 516 | prepare_unet: bool = False, | ||
| 517 | num_train_epochs: int = 100, | 526 | num_train_epochs: int = 100, |
| 518 | sample_frequency: int = 20, | 527 | sample_frequency: int = 20, |
| 519 | checkpoint_frequency: int = 50, | 528 | checkpoint_frequency: int = 50, |
| @@ -524,12 +533,12 @@ def train( | |||
| 524 | ): | 533 | ): |
| 525 | prep = [text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler] | 534 | prep = [text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler] |
| 526 | 535 | ||
| 527 | if prepare_unet: | 536 | if strategy.prepare_unet: |
| 528 | prep.append(unet) | 537 | prep.append(unet) |
| 529 | 538 | ||
| 530 | prep = accelerator.prepare(*prep) | 539 | prep = accelerator.prepare(*prep) |
| 531 | 540 | ||
| 532 | if prepare_unet: | 541 | if strategy.prepare_unet: |
| 533 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler, unet = prep | 542 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler, unet = prep |
| 534 | else: | 543 | else: |
| 535 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = prep | 544 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = prep |
| @@ -542,7 +551,7 @@ def train( | |||
| 542 | model.requires_grad_(False) | 551 | model.requires_grad_(False) |
| 543 | model.eval() | 552 | model.eval() |
| 544 | 553 | ||
| 545 | callbacks = callbacks_fn( | 554 | callbacks = strategy.callbacks( |
| 546 | accelerator=accelerator, | 555 | accelerator=accelerator, |
| 547 | unet=unet, | 556 | unet=unet, |
| 548 | text_encoder=text_encoder, | 557 | text_encoder=text_encoder, |
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 93c81cb..bc26ee6 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
| @@ -15,10 +15,10 @@ from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepSch | |||
| 15 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 15 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 16 | from models.clip.tokenizer import MultiCLIPTokenizer | 16 | from models.clip.tokenizer import MultiCLIPTokenizer |
| 17 | from training.util import EMAModel | 17 | from training.util import EMAModel |
| 18 | from training.functional import TrainingCallbacks, save_samples | 18 | from training.functional import TrainingStrategy, TrainingCallbacks, save_samples |
| 19 | 19 | ||
| 20 | 20 | ||
| 21 | def dreambooth_strategy( | 21 | def dreambooth_strategy_callbacks( |
| 22 | accelerator: Accelerator, | 22 | accelerator: Accelerator, |
| 23 | unet: UNet2DConditionModel, | 23 | unet: UNet2DConditionModel, |
| 24 | text_encoder: CLIPTextModel, | 24 | text_encoder: CLIPTextModel, |
| @@ -185,3 +185,9 @@ def dreambooth_strategy( | |||
| 185 | on_checkpoint=on_checkpoint, | 185 | on_checkpoint=on_checkpoint, |
| 186 | on_sample=on_sample, | 186 | on_sample=on_sample, |
| 187 | ) | 187 | ) |
| 188 | |||
| 189 | |||
| 190 | dreambooth_strategy = TrainingStrategy( | ||
| 191 | callbacks=dreambooth_strategy_callbacks, | ||
| 192 | prepare_unet=True | ||
| 193 | ) | ||
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 00f3529..597abd0 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
| @@ -15,10 +15,10 @@ from slugify import slugify | |||
| 15 | 15 | ||
| 16 | from models.clip.tokenizer import MultiCLIPTokenizer | 16 | from models.clip.tokenizer import MultiCLIPTokenizer |
| 17 | from training.util import EMAModel | 17 | from training.util import EMAModel |
| 18 | from training.functional import TrainingCallbacks, save_samples | 18 | from training.functional import TrainingStrategy, TrainingCallbacks, save_samples |
| 19 | 19 | ||
| 20 | 20 | ||
| 21 | def textual_inversion_strategy( | 21 | def textual_inversion_strategy_callbacks( |
| 22 | accelerator: Accelerator, | 22 | accelerator: Accelerator, |
| 23 | unet: UNet2DConditionModel, | 23 | unet: UNet2DConditionModel, |
| 24 | text_encoder: CLIPTextModel, | 24 | text_encoder: CLIPTextModel, |
| @@ -119,17 +119,18 @@ def textual_inversion_strategy( | |||
| 119 | with ema_context(): | 119 | with ema_context(): |
| 120 | yield | 120 | yield |
| 121 | 121 | ||
| 122 | @torch.no_grad() | ||
| 123 | def on_after_optimize(lr: float): | 122 | def on_after_optimize(lr: float): |
| 123 | if use_ema: | ||
| 124 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 125 | |||
| 126 | @torch.no_grad() | ||
| 127 | def on_after_epoch(lr: float): | ||
| 124 | if use_emb_decay: | 128 | if use_emb_decay: |
| 125 | text_encoder.text_model.embeddings.normalize( | 129 | text_encoder.text_model.embeddings.normalize( |
| 126 | emb_decay_target, | 130 | emb_decay_target, |
| 127 | min(1.0, max(0.0, emb_decay_factor * ((lr - emb_decay_start) / (learning_rate - emb_decay_start)))) | 131 | min(1.0, max(0.0, emb_decay_factor * ((lr - emb_decay_start) / (learning_rate - emb_decay_start)))) |
| 128 | ) | 132 | ) |
| 129 | 133 | ||
| 130 | if use_ema: | ||
| 131 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 132 | |||
| 133 | def on_log(): | 134 | def on_log(): |
| 134 | if use_ema: | 135 | if use_ema: |
| 135 | return {"ema_decay": ema_embeddings.decay} | 136 | return {"ema_decay": ema_embeddings.decay} |
| @@ -157,7 +158,13 @@ def textual_inversion_strategy( | |||
| 157 | on_train=on_train, | 158 | on_train=on_train, |
| 158 | on_eval=on_eval, | 159 | on_eval=on_eval, |
| 159 | on_after_optimize=on_after_optimize, | 160 | on_after_optimize=on_after_optimize, |
| 161 | on_after_epoch=on_after_epoch, | ||
| 160 | on_log=on_log, | 162 | on_log=on_log, |
| 161 | on_checkpoint=on_checkpoint, | 163 | on_checkpoint=on_checkpoint, |
| 162 | on_sample=on_sample, | 164 | on_sample=on_sample, |
| 163 | ) | 165 | ) |
| 166 | |||
| 167 | |||
| 168 | textual_inversion_strategy = TrainingStrategy( | ||
| 169 | callbacks=textual_inversion_strategy_callbacks, | ||
| 170 | ) | ||
diff --git a/training/util.py b/training/util.py index 557b196..237626f 100644 --- a/training/util.py +++ b/training/util.py | |||
| @@ -1,18 +1,11 @@ | |||
| 1 | from pathlib import Path | 1 | from pathlib import Path |
| 2 | import json | 2 | import json |
| 3 | import copy | 3 | import copy |
| 4 | from typing import Iterable, Union | 4 | from typing import Iterable, Any |
| 5 | from contextlib import contextmanager | 5 | from contextlib import contextmanager |
| 6 | 6 | ||
| 7 | import torch | 7 | import torch |
| 8 | 8 | ||
| 9 | from transformers import CLIPTextModel | ||
| 10 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler | ||
| 11 | |||
| 12 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 13 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 14 | from models.clip.embeddings import ManagedCLIPTextEmbeddings, patch_managed_embeddings | ||
| 15 | |||
| 16 | 9 | ||
| 17 | def save_args(basepath: Path, args, extra={}): | 10 | def save_args(basepath: Path, args, extra={}): |
| 18 | info = {"args": vars(args)} | 11 | info = {"args": vars(args)} |
| @@ -22,6 +15,8 @@ def save_args(basepath: Path, args, extra={}): | |||
| 22 | 15 | ||
| 23 | 16 | ||
| 24 | class AverageMeter: | 17 | class AverageMeter: |
| 18 | avg: Any | ||
| 19 | |||
| 25 | def __init__(self, name=None): | 20 | def __init__(self, name=None): |
| 26 | self.name = name | 21 | self.name = name |
| 27 | self.reset() | 22 | self.reset() |
