diff options
Diffstat (limited to 'training')
-rw-r--r-- | training/functional.py | 3 | ||||
-rw-r--r-- | training/strategy/dreambooth.py | 27 | ||||
-rw-r--r-- | training/strategy/lora.py | 2 | ||||
-rw-r--r-- | training/strategy/ti.py | 25 |
4 files changed, 29 insertions, 28 deletions
diff --git a/training/functional.py b/training/functional.py index 46d25f6..ff6d3a9 100644 --- a/training/functional.py +++ b/training/functional.py | |||
@@ -695,5 +695,8 @@ def train( | |||
695 | callbacks=callbacks, | 695 | callbacks=callbacks, |
696 | ) | 696 | ) |
697 | 697 | ||
698 | accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=False) | ||
699 | accelerator.unwrap_model(unet, keep_fp32_wrapper=False) | ||
700 | |||
698 | accelerator.end_training() | 701 | accelerator.end_training() |
699 | accelerator.free_memory() | 702 | accelerator.free_memory() |
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 42624cd..7cdfc7f 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
@@ -113,7 +113,7 @@ def dreambooth_strategy_callbacks( | |||
113 | accelerator.clip_grad_norm_(itertools.chain(*params_to_clip), max_grad_norm) | 113 | accelerator.clip_grad_norm_(itertools.chain(*params_to_clip), max_grad_norm) |
114 | 114 | ||
115 | @torch.no_grad() | 115 | @torch.no_grad() |
116 | def on_after_optimize(_, lr: float): | 116 | def on_after_optimize(_, lrs: dict[str, float]): |
117 | if ema_unet is not None: | 117 | if ema_unet is not None: |
118 | ema_unet.step(unet.parameters()) | 118 | ema_unet.step(unet.parameters()) |
119 | 119 | ||
@@ -149,25 +149,24 @@ def dreambooth_strategy_callbacks( | |||
149 | if torch.cuda.is_available(): | 149 | if torch.cuda.is_available(): |
150 | torch.cuda.empty_cache() | 150 | torch.cuda.empty_cache() |
151 | 151 | ||
152 | @torch.no_grad() | 152 | @on_eval() |
153 | def on_sample(step): | 153 | def on_sample(step): |
154 | with ema_context(): | 154 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
155 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 155 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
156 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | ||
157 | 156 | ||
158 | orig_unet_dtype = unet_.dtype | 157 | orig_unet_dtype = unet_.dtype |
159 | orig_text_encoder_dtype = text_encoder_.dtype | 158 | orig_text_encoder_dtype = text_encoder_.dtype |
160 | 159 | ||
161 | unet_.to(dtype=weight_dtype) | 160 | unet_.to(dtype=weight_dtype) |
162 | text_encoder_.to(dtype=weight_dtype) | 161 | text_encoder_.to(dtype=weight_dtype) |
163 | 162 | ||
164 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) | 163 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) |
165 | 164 | ||
166 | unet_.to(dtype=orig_unet_dtype) | 165 | unet_.to(dtype=orig_unet_dtype) |
167 | text_encoder_.to(dtype=orig_text_encoder_dtype) | 166 | text_encoder_.to(dtype=orig_text_encoder_dtype) |
168 | 167 | ||
169 | del unet_ | 168 | del unet_ |
170 | del text_encoder_ | 169 | del text_encoder_ |
171 | 170 | ||
172 | if torch.cuda.is_available(): | 171 | if torch.cuda.is_available(): |
173 | torch.cuda.empty_cache() | 172 | torch.cuda.empty_cache() |
diff --git a/training/strategy/lora.py b/training/strategy/lora.py index 73ec8f2..0f72a17 100644 --- a/training/strategy/lora.py +++ b/training/strategy/lora.py | |||
@@ -146,7 +146,7 @@ def lora_strategy_callbacks( | |||
146 | if torch.cuda.is_available(): | 146 | if torch.cuda.is_available(): |
147 | torch.cuda.empty_cache() | 147 | torch.cuda.empty_cache() |
148 | 148 | ||
149 | @torch.no_grad() | 149 | @on_eval() |
150 | def on_sample(step): | 150 | def on_sample(step): |
151 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 151 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
152 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | 152 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 363c3f9..f00045f 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
@@ -142,25 +142,24 @@ def textual_inversion_strategy_callbacks( | |||
142 | checkpoint_output_dir / f"{slugify(token)}_{step}_{postfix}.bin" | 142 | checkpoint_output_dir / f"{slugify(token)}_{step}_{postfix}.bin" |
143 | ) | 143 | ) |
144 | 144 | ||
145 | @torch.no_grad() | 145 | @on_eval() |
146 | def on_sample(step): | 146 | def on_sample(step): |
147 | with ema_context(): | 147 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
148 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 148 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
149 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | ||
150 | 149 | ||
151 | orig_unet_dtype = unet_.dtype | 150 | orig_unet_dtype = unet_.dtype |
152 | orig_text_encoder_dtype = text_encoder_.dtype | 151 | orig_text_encoder_dtype = text_encoder_.dtype |
153 | 152 | ||
154 | unet_.to(dtype=weight_dtype) | 153 | unet_.to(dtype=weight_dtype) |
155 | text_encoder_.to(dtype=weight_dtype) | 154 | text_encoder_.to(dtype=weight_dtype) |
156 | 155 | ||
157 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) | 156 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) |
158 | 157 | ||
159 | unet_.to(dtype=orig_unet_dtype) | 158 | unet_.to(dtype=orig_unet_dtype) |
160 | text_encoder_.to(dtype=orig_text_encoder_dtype) | 159 | text_encoder_.to(dtype=orig_text_encoder_dtype) |
161 | 160 | ||
162 | del unet_ | 161 | del unet_ |
163 | del text_encoder_ | 162 | del text_encoder_ |
164 | 163 | ||
165 | if torch.cuda.is_available(): | 164 | if torch.cuda.is_available(): |
166 | torch.cuda.empty_cache() | 165 | torch.cuda.empty_cache() |