From 8364ce697ddf6117fdd4f7222832d546d63880de Mon Sep 17 00:00:00 2001 From: Volpeon Date: Wed, 21 Jun 2023 13:28:49 +0200 Subject: Update --- models/attention/control.py | 106 ++++++++++++++++++++++++++++++----------- models/attention/hook.py | 5 +- models/attention/structured.py | 65 +++++++++++++++---------- 3 files changed, 119 insertions(+), 57 deletions(-) (limited to 'models/attention') diff --git a/models/attention/control.py b/models/attention/control.py index 248bd9f..ec378c4 100644 --- a/models/attention/control.py +++ b/models/attention/control.py @@ -23,7 +23,7 @@ class AttentionControl(abc.ABC): attn = self.forward(attn, is_cross, place_in_unet) else: h = attn.shape[0] - attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) + attn[h // 2 :] = self.forward(attn[h // 2 :], is_cross, place_in_unet) self.cur_att_layer += 1 if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: self.cur_att_layer = 0 @@ -49,12 +49,18 @@ class EmptyControl(AttentionControl): class AttentionStore(AttentionControl): @staticmethod def get_empty_store(): - return {"down_cross": [], "mid_cross": [], "up_cross": [], - "down_self": [], "mid_self": [], "up_self": []} + return { + "down_cross": [], + "mid_cross": [], + "up_cross": [], + "down_self": [], + "mid_self": [], + "up_self": [], + } def forward(self, attn, is_cross: bool, place_in_unet: str): key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" - if attn.shape[1] <= 32 ** 2: # avoid memory overhead + if attn.shape[1] <= 32**2: # avoid memory overhead self.step_store[key].append(attn) return attn @@ -68,8 +74,10 @@ class AttentionStore(AttentionControl): self.step_store = self.get_empty_store() def get_average_attention(self): - average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] - for key in self.attention_store} + average_attention = { + key: [item / self.cur_step for item in self.attention_store[key]] + for key in self.attention_store + } return average_attention def reset(self): @@ -90,7 +98,7 @@ class AttentionControlEdit(AttentionStore, abc.ABC): return x_t def replace_self_attention(self, attn_base, att_replace): - if att_replace.shape[2] <= 16 ** 2: + if att_replace.shape[2] <= 16**2: return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) else: return att_replace @@ -101,41 +109,62 @@ class AttentionControlEdit(AttentionStore, abc.ABC): def forward(self, attn, is_cross: bool, place_in_unet: str): super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) - if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): + if is_cross or ( + self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1] + ): h = attn.shape[0] // (self.batch_size) attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) attn_base, attn_repalce = attn[0], attn[1:] if is_cross: alpha_words = self.cross_replace_alpha[self.cur_step] - attn_repalce_new = self.replace_cross_attention( - attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce + attn_repalce_new = ( + self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + + (1 - alpha_words) * attn_repalce + ) attn[1:] = attn_repalce_new else: attn[1:] = self.replace_self_attention(attn_base, attn_repalce) attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) return attn - def __init__(self, prompts, num_steps: int, - cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], - self_replace_steps: Union[float, Tuple[float, float]], - local_blend: Optional[LocalBlend]): + def __init__( + self, + prompts, + num_steps: int, + cross_replace_steps: Union[ + float, Tuple[float, float], Dict[str, Tuple[float, float]] + ], + self_replace_steps: Union[float, Tuple[float, float]], + local_blend: Optional[LocalBlend], + ): super(AttentionControlEdit, self).__init__() self.batch_size = len(prompts) self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha( - prompts, num_steps, cross_replace_steps, tokenizer).to(device) + prompts, num_steps, cross_replace_steps, tokenizer + ).to(device) if type(self_replace_steps) is float: self_replace_steps = 0, self_replace_steps - self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) + self.num_self_replace = int(num_steps * self_replace_steps[0]), int( + num_steps * self_replace_steps[1] + ) self.local_blend = local_blend class AttentionReplace(AttentionControlEdit): def replace_cross_attention(self, attn_base, att_replace): - return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) - - def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, - local_blend: Optional[LocalBlend] = None): - super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) + return torch.einsum("hpw,bwn->bhpn", attn_base, self.mapper) + + def __init__( + self, + prompts, + num_steps: int, + cross_replace_steps: float, + self_replace_steps: float, + local_blend: Optional[LocalBlend] = None, + ): + super(AttentionReplace, self).__init__( + prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend + ) self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device) @@ -145,9 +174,17 @@ class AttentionRefine(AttentionControlEdit): attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) return attn_replace - def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, - local_blend: Optional[LocalBlend] = None): - super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) + def __init__( + self, + prompts, + num_steps: int, + cross_replace_steps: float, + self_replace_steps: float, + local_blend: Optional[LocalBlend] = None, + ): + super(AttentionRefine, self).__init__( + prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend + ) self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer) self.mapper, alphas = self.mapper.to(device), alphas.to(device) self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) @@ -156,13 +193,24 @@ class AttentionRefine(AttentionControlEdit): class AttentionReweight(AttentionControlEdit): def replace_cross_attention(self, attn_base, att_replace): if self.prev_controller is not None: - attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace) + attn_base = self.prev_controller.replace_cross_attention( + attn_base, att_replace + ) attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] return attn_replace - def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer, - local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None): - super(AttentionReweight, self).__init__(prompts, num_steps, - cross_replace_steps, self_replace_steps, local_blend) + def __init__( + self, + prompts, + num_steps: int, + cross_replace_steps: float, + self_replace_steps: float, + equalizer, + local_blend: Optional[LocalBlend] = None, + controller: Optional[AttentionControlEdit] = None, + ): + super(AttentionReweight, self).__init__( + prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend + ) self.equalizer = equalizer.to(device) self.prev_controller = controller diff --git a/models/attention/hook.py b/models/attention/hook.py index 903de02..6b5fb68 100644 --- a/models/attention/hook.py +++ b/models/attention/hook.py @@ -3,6 +3,7 @@ import torch try: import xformers.ops + xformers._is_functorch_available = True MEM_EFFICIENT_ATTN = True except ImportError: @@ -42,10 +43,10 @@ def register_attention_control(model, controller): return forward def register_recr(net_, count, place_in_unet): - if net_.__class__.__name__ == 'CrossAttention': + if net_.__class__.__name__ == "CrossAttention": net_.forward = ca_forward(net_, place_in_unet) return count + 1 - elif hasattr(net_, 'children'): + elif hasattr(net_, "children"): for net__ in net_.children(): count = register_recr(net__, count, place_in_unet) return count diff --git a/models/attention/structured.py b/models/attention/structured.py index 24d889f..5bbbc06 100644 --- a/models/attention/structured.py +++ b/models/attention/structured.py @@ -16,7 +16,9 @@ class StructuredAttentionControl(AttentionControl): if self.struct_attn: out = self.struct_qkv(q, context, mask) else: - context = torch.cat([context[0], context[1]['k'][0]], dim=0) # use key tensor for context + context = torch.cat( + [context[0], context[1]["k"][0]], dim=0 + ) # use key tensor for context out = self.normal_qkv(q, context, mask) else: context = default(context, x) @@ -29,11 +31,13 @@ class StructuredAttentionControl(AttentionControl): context: list of [uc, list of conditional context] """ uc_context = context[0] - context_k, context_v = context[1]['k'], context[1]['v'] + context_k, context_v = context[1]["k"], context[1]["v"] if isinstance(context_k, list) and isinstance(context_v, list): out = self.multi_qkv(q, uc_context, context_k, context_v, mask) - elif isinstance(context_k, torch.Tensor) and isinstance(context_v, torch.Tensor): + elif isinstance(context_k, torch.Tensor) and isinstance( + context_v, torch.Tensor + ): out = self.heterogeous_qkv(q, uc_context, context_k, context_v, mask) else: raise NotImplementedError @@ -50,36 +54,45 @@ class StructuredAttentionControl(AttentionControl): k_c = [self.to_k(c_k) for c_k in context_k] v_c = [self.to_v(c_v) for c_v in context_v] - q = rearrange(q, 'b n (h d) -> (b h) n d', h=h) + q = rearrange(q, "b n (h d) -> (b h) n d", h=h) - k_uc = rearrange(k_uc, 'b n (h d) -> (b h) n d', h=h) - v_uc = rearrange(v_uc, 'b n (h d) -> (b h) n d', h=h) + k_uc = rearrange(k_uc, "b n (h d) -> (b h) n d", h=h) + v_uc = rearrange(v_uc, "b n (h d) -> (b h) n d", h=h) - k_c = [rearrange(k, 'b n (h d) -> (b h) n d', h=h) for k in k_c] # NOTE: modification point - v_c = [rearrange(v, 'b n (h d) -> (b h) n d', h=h) for v in v_c] + k_c = [ + rearrange(k, "b n (h d) -> (b h) n d", h=h) for k in k_c + ] # NOTE: modification point + v_c = [rearrange(v, "b n (h d) -> (b h) n d", h=h) for v in v_c] # get composition - sim_uc = einsum('b i d, b j d -> b i j', q[:true_bs], k_uc) * self.scale - sim_c = [einsum('b i d, b j d -> b i j', q[true_bs:], k) * self.scale for k in k_c] + sim_uc = einsum("b i d, b j d -> b i j", q[:true_bs], k_uc) * self.scale + sim_c = [ + einsum("b i d, b j d -> b i j", q[true_bs:], k) * self.scale for k in k_c + ] attn_uc = sim_uc.softmax(dim=-1) attn_c = [sim.softmax(dim=-1) for sim in sim_c] # get uc output - out_uc = einsum('b i j, b j d -> b i d', attn_uc, v_uc) + out_uc = einsum("b i j, b j d -> b i d", attn_uc, v_uc) # get c output if len(v_c) == 1: out_c_collect = [] for attn in attn_c: for v in v_c: - out_c_collect.append(einsum('b i j, b j d -> b i d', attn, v)) + out_c_collect.append(einsum("b i j, b j d -> b i d", attn, v)) out_c = sum(out_c_collect) / len(out_c_collect) else: - out_c = sum([einsum('b i j, b j d -> b i d', attn, v) for attn, v in zip(attn_c, v_c)]) / len(v_c) + out_c = sum( + [ + einsum("b i j, b j d -> b i d", attn, v) + for attn, v in zip(attn_c, v_c) + ] + ) / len(v_c) out = torch.cat([out_uc, out_c], dim=0) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + out = rearrange(out, "(b h) n d -> b n (h d)", h=h) return out @@ -88,21 +101,21 @@ class StructuredAttentionControl(AttentionControl): k = self.to_k(context) v = self.to_v(context) - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale + sim = einsum("b i d, b j d -> b i j", q, k) * self.scale if exists(mask): - mask = rearrange(mask, 'b ... -> b (...)') + mask = rearrange(mask, "b ... -> b (...)") max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) + mask = repeat(mask, "b j -> (b h) () j", h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + out = einsum("b i j, b j d -> b i d", attn, v) + out = rearrange(out, "(b h) n d -> b n (h d)", h=h) return out @@ -111,21 +124,21 @@ class StructuredAttentionControl(AttentionControl): k = self.to_k(torch.cat([uc_context, context_k], dim=0)) v = self.to_v(torch.cat([uc_context, context_v], dim=0)) - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale + sim = einsum("b i d, b j d -> b i j", q, k) * self.scale if exists(mask): - mask = rearrange(mask, 'b ... -> b (...)') + mask = rearrange(mask, "b ... -> b (...)") max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) + mask = repeat(mask, "b j -> (b h) () j", h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + out = einsum("b i j, b j d -> b i d", attn, v) + out = rearrange(out, "(b h) n d -> b n (h d)", h=h) return out def get_kv(self, context): -- cgit v1.2.3-70-g09d2