From b5e0ef7b8a4629c2d1885a96f0faf24fafba1467 Mon Sep 17 00:00:00 2001 From: Volpeon Date: Sun, 26 Mar 2023 14:29:57 +0200 Subject: Improved TI embeddings --- models/clip/embeddings.py | 30 +++++++++++++++++++++++------- 1 file changed, 23 insertions(+), 7 deletions(-) (limited to 'models') diff --git a/models/clip/embeddings.py b/models/clip/embeddings.py index 6be6e9f..8d01867 100644 --- a/models/clip/embeddings.py +++ b/models/clip/embeddings.py @@ -38,18 +38,24 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): self.token_embedding = embeddings.token_embedding self.position_embedding = embeddings.position_embedding self.initializer_factor = config.initializer_factor + self.num_permanent_embeddings = self.token_embedding.num_embeddings + self.init_temp_embeddings() + def init_temp_embeddings(self): self.temp_token_embedding = nn.Embedding( - self.token_embedding.num_embeddings, + 0, self.token_embedding.embedding_dim, device=self.token_embedding.weight.device, dtype=self.token_embedding.weight.dtype ) - self.temp_token_embedding.weight.data = self.token_embedding.weight.data.clone().detach() self.temp_token_ids = torch.tensor([], dtype=torch.long) def resize(self, size: int): - self.temp_token_embedding = resize_embedding(self.temp_token_embedding, size, self.initializer_factor) + self.temp_token_embedding = resize_embedding( + self.temp_token_embedding, + size - self.num_permanent_embeddings, + self.initializer_factor + ) self.token_embedding = resize_embedding(self.token_embedding, size, self.initializer_factor) def add_embed(self, token_ids: Union[int, list[int]], initializer: Optional[Union[int, list[int], torch.FloatTensor]] = None): @@ -71,7 +77,8 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): token_ids = torch.tensor(token_ids, dtype=torch.long) self.temp_token_ids = torch.cat([self.temp_token_ids, token_ids]) - self.temp_token_embedding.weight.data[token_ids] = initializer.to( + mask = torch.nonzero(self.temp_token_ids == token_ids).squeeze(1) + self.temp_token_embedding.weight.data[mask] = initializer.to( device=self.temp_token_embedding.weight.device, dtype=self.temp_token_embedding.weight.dtype, ) @@ -85,16 +92,25 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): def persist(self): self.token_embedding.weight.data[self.temp_token_ids] = self.temp_token_embedding.weight.data[self.temp_token_ids] - self.temp_token_ids = torch.tensor([], dtype=torch.long) + self.num_permanent_embeddings = self.token_embedding.num_embeddings + self.init_temp_embeddings() def get_embed(self, input_ids: Union[list[int], torch.LongTensor]): if isinstance(input_ids, list): input_ids = torch.tensor(input_ids, device=self.token_embedding.weight.device, dtype=torch.long) + all_temp_token_ids = self.temp_token_ids.to(input_ids.device) + embeds = self.token_embedding(input_ids) - mask = torch.isin(input_ids, self.temp_token_ids.to(input_ids.device)) - embeds[mask] = self.temp_token_embedding(input_ids)[mask] + embeds_mask = torch.isin(input_ids, all_temp_token_ids) + temp_token_ids = input_ids[embeds_mask] + + temp_token_ids = temp_token_ids.unsqueeze(1) + all_temp_token_ids = all_temp_token_ids.unsqueeze(0) + temp_token_ids = torch.nonzero(temp_token_ids == all_temp_token_ids)[:, 1].squeeze() + + embeds[embeds_mask] = self.temp_token_embedding(temp_token_ids) return embeds -- cgit v1.2.3-70-g09d2