From 036e33fbde6bad7c48bb6f6b3d695b7908535c64 Mon Sep 17 00:00:00 2001 From: Volpeon Date: Thu, 3 Nov 2022 17:56:08 +0100 Subject: Update --- .../stable_diffusion/vlpn_stable_diffusion.py | 36 ++++++++++++++++++++-- 1 file changed, 34 insertions(+), 2 deletions(-) (limited to 'pipelines/stable_diffusion') diff --git a/pipelines/stable_diffusion/vlpn_stable_diffusion.py b/pipelines/stable_diffusion/vlpn_stable_diffusion.py index cd5ae7e..36942f0 100644 --- a/pipelines/stable_diffusion/vlpn_stable_diffusion.py +++ b/pipelines/stable_diffusion/vlpn_stable_diffusion.py @@ -7,6 +7,7 @@ import torch import PIL from diffusers.configuration_utils import FrozenDict +from diffusers.utils import is_accelerate_available from diffusers import AutoencoderKL, DiffusionPipeline, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import logging @@ -61,13 +62,27 @@ class VlpnStableDiffusion(DiffusionPipeline): scheduler=scheduler, ) + def enable_xformers_memory_efficient_attention(self): + r""" + Enable memory efficient attention as implemented in xformers. + When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference + time. Speed up at training time is not guaranteed. + Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention + is used. + """ + self.unet.set_use_memory_efficient_attention_xformers(True) + + def disable_xformers_memory_efficient_attention(self): + r""" + Disable memory efficient attention as implemented in xformers. + """ + self.unet.set_use_memory_efficient_attention_xformers(False) + def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): r""" Enable sliced attention computation. - When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. - Args: slice_size (`str` or `int`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If @@ -88,6 +103,23 @@ class VlpnStableDiffusion(DiffusionPipeline): # set slice_size = `None` to disable `attention slicing` self.enable_attention_slicing(None) + def enable_sequential_cpu_offload(self): + r""" + Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, + text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a + `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. + """ + if is_accelerate_available(): + from accelerate import cpu_offload + else: + raise ImportError("Please install accelerate via `pip install accelerate`") + + device = torch.device("cuda") + + for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: + if cpu_offloaded_model is not None: + cpu_offload(cpu_offloaded_model, device) + @torch.no_grad() def __call__( self, -- cgit v1.2.3-70-g09d2