From 5588b93859c4380082a7e46bf5bef2119ec1907a Mon Sep 17 00:00:00 2001
From: Volpeon <git@volpeon.ink>
Date: Mon, 26 Sep 2022 16:36:42 +0200
Subject: Init

---
 ...nvert_original_stable_diffusion_to_diffusers.py | 690 +++++++++++++++++++++
 1 file changed, 690 insertions(+)
 create mode 100644 scripts/convert_original_stable_diffusion_to_diffusers.py

(limited to 'scripts')

diff --git a/scripts/convert_original_stable_diffusion_to_diffusers.py b/scripts/convert_original_stable_diffusion_to_diffusers.py
new file mode 100644
index 0000000..ee7fc33
--- /dev/null
+++ b/scripts/convert_original_stable_diffusion_to_diffusers.py
@@ -0,0 +1,690 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Conversion script for the LDM checkpoints. """
+
+import argparse
+import os
+
+import torch
+
+
+try:
+    from omegaconf import OmegaConf
+except ImportError:
+    raise ImportError(
+        "OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`."
+    )
+
+from diffusers import (
+    AutoencoderKL,
+    DDIMScheduler,
+    LDMTextToImagePipeline,
+    LMSDiscreteScheduler,
+    PNDMScheduler,
+    StableDiffusionPipeline,
+    UNet2DConditionModel,
+)
+from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
+from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
+from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer
+
+
+def shave_segments(path, n_shave_prefix_segments=1):
+    """
+    Removes segments. Positive values shave the first segments, negative shave the last segments.
+    """
+    if n_shave_prefix_segments >= 0:
+        return ".".join(path.split(".")[n_shave_prefix_segments:])
+    else:
+        return ".".join(path.split(".")[:n_shave_prefix_segments])
+
+
+def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
+    """
+    Updates paths inside resnets to the new naming scheme (local renaming)
+    """
+    mapping = []
+    for old_item in old_list:
+        new_item = old_item.replace("in_layers.0", "norm1")
+        new_item = new_item.replace("in_layers.2", "conv1")
+
+        new_item = new_item.replace("out_layers.0", "norm2")
+        new_item = new_item.replace("out_layers.3", "conv2")
+
+        new_item = new_item.replace("emb_layers.1", "time_emb_proj")
+        new_item = new_item.replace("skip_connection", "conv_shortcut")
+
+        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
+
+        mapping.append({"old": old_item, "new": new_item})
+
+    return mapping
+
+
+def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
+    """
+    Updates paths inside resnets to the new naming scheme (local renaming)
+    """
+    mapping = []
+    for old_item in old_list:
+        new_item = old_item
+
+        new_item = new_item.replace("nin_shortcut", "conv_shortcut")
+        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
+
+        mapping.append({"old": old_item, "new": new_item})
+
+    return mapping
+
+
+def renew_attention_paths(old_list, n_shave_prefix_segments=0):
+    """
+    Updates paths inside attentions to the new naming scheme (local renaming)
+    """
+    mapping = []
+    for old_item in old_list:
+        new_item = old_item
+
+        #         new_item = new_item.replace('norm.weight', 'group_norm.weight')
+        #         new_item = new_item.replace('norm.bias', 'group_norm.bias')
+
+        #         new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
+        #         new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
+
+        #         new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
+
+        mapping.append({"old": old_item, "new": new_item})
+
+    return mapping
+
+
+def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
+    """
+    Updates paths inside attentions to the new naming scheme (local renaming)
+    """
+    mapping = []
+    for old_item in old_list:
+        new_item = old_item
+
+        new_item = new_item.replace("norm.weight", "group_norm.weight")
+        new_item = new_item.replace("norm.bias", "group_norm.bias")
+
+        new_item = new_item.replace("q.weight", "query.weight")
+        new_item = new_item.replace("q.bias", "query.bias")
+
+        new_item = new_item.replace("k.weight", "key.weight")
+        new_item = new_item.replace("k.bias", "key.bias")
+
+        new_item = new_item.replace("v.weight", "value.weight")
+        new_item = new_item.replace("v.bias", "value.bias")
+
+        new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
+        new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
+
+        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
+
+        mapping.append({"old": old_item, "new": new_item})
+
+    return mapping
+
+
+def assign_to_checkpoint(
+    paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
+):
+    """
+    This does the final conversion step: take locally converted weights and apply a global renaming
+    to them. It splits attention layers, and takes into account additional replacements
+    that may arise.
+
+    Assigns the weights to the new checkpoint.
+    """
+    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
+
+    # Splits the attention layers into three variables.
+    if attention_paths_to_split is not None:
+        for path, path_map in attention_paths_to_split.items():
+            old_tensor = old_checkpoint[path]
+            channels = old_tensor.shape[0] // 3
+
+            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
+
+            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
+
+            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
+            query, key, value = old_tensor.split(channels // num_heads, dim=1)
+
+            checkpoint[path_map["query"]] = query.reshape(target_shape)
+            checkpoint[path_map["key"]] = key.reshape(target_shape)
+            checkpoint[path_map["value"]] = value.reshape(target_shape)
+
+    for path in paths:
+        new_path = path["new"]
+
+        # These have already been assigned
+        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
+            continue
+
+        # Global renaming happens here
+        new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
+        new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
+        new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
+
+        if additional_replacements is not None:
+            for replacement in additional_replacements:
+                new_path = new_path.replace(replacement["old"], replacement["new"])
+
+        # proj_attn.weight has to be converted from conv 1D to linear
+        if "proj_attn.weight" in new_path:
+            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
+        else:
+            checkpoint[new_path] = old_checkpoint[path["old"]]
+
+
+def conv_attn_to_linear(checkpoint):
+    keys = list(checkpoint.keys())
+    attn_keys = ["query.weight", "key.weight", "value.weight"]
+    for key in keys:
+        if ".".join(key.split(".")[-2:]) in attn_keys:
+            if checkpoint[key].ndim > 2:
+                checkpoint[key] = checkpoint[key][:, :, 0, 0]
+        elif "proj_attn.weight" in key:
+            if checkpoint[key].ndim > 2:
+                checkpoint[key] = checkpoint[key][:, :, 0]
+
+
+def create_unet_diffusers_config(original_config):
+    """
+    Creates a config for the diffusers based on the config of the LDM model.
+    """
+    unet_params = original_config.model.params.unet_config.params
+
+    block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
+
+    down_block_types = []
+    resolution = 1
+    for i in range(len(block_out_channels)):
+        block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
+        down_block_types.append(block_type)
+        if i != len(block_out_channels) - 1:
+            resolution *= 2
+
+    up_block_types = []
+    for i in range(len(block_out_channels)):
+        block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
+        up_block_types.append(block_type)
+        resolution //= 2
+
+    config = dict(
+        sample_size=unet_params.image_size,
+        in_channels=unet_params.in_channels,
+        out_channels=unet_params.out_channels,
+        down_block_types=tuple(down_block_types),
+        up_block_types=tuple(up_block_types),
+        block_out_channels=tuple(block_out_channels),
+        layers_per_block=unet_params.num_res_blocks,
+        cross_attention_dim=unet_params.context_dim,
+        attention_head_dim=unet_params.num_heads,
+    )
+
+    return config
+
+
+def create_vae_diffusers_config(original_config):
+    """
+    Creates a config for the diffusers based on the config of the LDM model.
+    """
+    vae_params = original_config.model.params.first_stage_config.params.ddconfig
+    _ = original_config.model.params.first_stage_config.params.embed_dim
+
+    block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
+    down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
+    up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
+
+    config = dict(
+        sample_size=vae_params.resolution,
+        in_channels=vae_params.in_channels,
+        out_channels=vae_params.out_ch,
+        down_block_types=tuple(down_block_types),
+        up_block_types=tuple(up_block_types),
+        block_out_channels=tuple(block_out_channels),
+        latent_channels=vae_params.z_channels,
+        layers_per_block=vae_params.num_res_blocks,
+    )
+    return config
+
+
+def create_diffusers_schedular(original_config):
+    schedular = DDIMScheduler(
+        num_train_timesteps=original_config.model.params.timesteps,
+        beta_start=original_config.model.params.linear_start,
+        beta_end=original_config.model.params.linear_end,
+        beta_schedule="scaled_linear",
+    )
+    return schedular
+
+
+def create_ldm_bert_config(original_config):
+    bert_params = original_config.model.parms.cond_stage_config.params
+    config = LDMBertConfig(
+        d_model=bert_params.n_embed,
+        encoder_layers=bert_params.n_layer,
+        encoder_ffn_dim=bert_params.n_embed * 4,
+    )
+    return config
+
+
+def convert_ldm_unet_checkpoint(checkpoint, config):
+    """
+    Takes a state dict and a config, and returns a converted checkpoint.
+    """
+
+    # extract state_dict for UNet
+    unet_state_dict = {}
+    unet_key = "model.diffusion_model."
+    keys = list(checkpoint.keys())
+    for key in keys:
+        if key.startswith(unet_key):
+            unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
+
+    new_checkpoint = {}
+
+    new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
+    new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
+    new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
+    new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
+
+    new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
+    new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
+
+    new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
+    new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
+    new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
+    new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
+
+    # Retrieves the keys for the input blocks only
+    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
+    input_blocks = {
+        layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
+        for layer_id in range(num_input_blocks)
+    }
+
+    # Retrieves the keys for the middle blocks only
+    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
+    middle_blocks = {
+        layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
+        for layer_id in range(num_middle_blocks)
+    }
+
+    # Retrieves the keys for the output blocks only
+    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
+    output_blocks = {
+        layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
+        for layer_id in range(num_output_blocks)
+    }
+
+    for i in range(1, num_input_blocks):
+        block_id = (i - 1) // (config["layers_per_block"] + 1)
+        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
+
+        resnets = [
+            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
+        ]
+        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
+
+        if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
+            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
+                f"input_blocks.{i}.0.op.weight"
+            )
+            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
+                f"input_blocks.{i}.0.op.bias"
+            )
+
+        paths = renew_resnet_paths(resnets)
+        meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
+        assign_to_checkpoint(
+            paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
+        )
+
+        if len(attentions):
+            paths = renew_attention_paths(attentions)
+            meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
+            assign_to_checkpoint(
+                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
+            )
+
+    resnet_0 = middle_blocks[0]
+    attentions = middle_blocks[1]
+    resnet_1 = middle_blocks[2]
+
+    resnet_0_paths = renew_resnet_paths(resnet_0)
+    assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
+
+    resnet_1_paths = renew_resnet_paths(resnet_1)
+    assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
+
+    attentions_paths = renew_attention_paths(attentions)
+    meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
+    assign_to_checkpoint(
+        attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
+    )
+
+    for i in range(num_output_blocks):
+        block_id = i // (config["layers_per_block"] + 1)
+        layer_in_block_id = i % (config["layers_per_block"] + 1)
+        output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
+        output_block_list = {}
+
+        for layer in output_block_layers:
+            layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
+            if layer_id in output_block_list:
+                output_block_list[layer_id].append(layer_name)
+            else:
+                output_block_list[layer_id] = [layer_name]
+
+        if len(output_block_list) > 1:
+            resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
+            attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
+
+            resnet_0_paths = renew_resnet_paths(resnets)
+            paths = renew_resnet_paths(resnets)
+
+            meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
+            assign_to_checkpoint(
+                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
+            )
+
+            if ["conv.weight", "conv.bias"] in output_block_list.values():
+                index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
+                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
+                    f"output_blocks.{i}.{index}.conv.weight"
+                ]
+                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
+                    f"output_blocks.{i}.{index}.conv.bias"
+                ]
+
+                # Clear attentions as they have been attributed above.
+                if len(attentions) == 2:
+                    attentions = []
+
+            if len(attentions):
+                paths = renew_attention_paths(attentions)
+                meta_path = {
+                    "old": f"output_blocks.{i}.1",
+                    "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
+                }
+                assign_to_checkpoint(
+                    paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
+                )
+        else:
+            resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
+            for path in resnet_0_paths:
+                old_path = ".".join(["output_blocks", str(i), path["old"]])
+                new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
+
+                new_checkpoint[new_path] = unet_state_dict[old_path]
+
+    return new_checkpoint
+
+
+def convert_ldm_vae_checkpoint(checkpoint, config):
+    # extract state dict for VAE
+    vae_state_dict = {}
+    vae_key = "first_stage_model."
+    keys = list(checkpoint.keys())
+    for key in keys:
+        if key.startswith(vae_key):
+            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
+
+    new_checkpoint = {}
+
+    new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
+    new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
+    new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
+    new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
+    new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
+    new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
+
+    new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
+    new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
+    new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
+    new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
+    new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
+    new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
+
+    new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
+    new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
+    new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
+    new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
+
+    # Retrieves the keys for the encoder down blocks only
+    num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
+    down_blocks = {
+        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
+    }
+
+    # Retrieves the keys for the decoder up blocks only
+    num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
+    up_blocks = {
+        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
+    }
+
+    for i in range(num_down_blocks):
+        resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
+
+        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
+            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
+                f"encoder.down.{i}.downsample.conv.weight"
+            )
+            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
+                f"encoder.down.{i}.downsample.conv.bias"
+            )
+
+        paths = renew_vae_resnet_paths(resnets)
+        meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
+        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
+
+    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
+    num_mid_res_blocks = 2
+    for i in range(1, num_mid_res_blocks + 1):
+        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
+
+        paths = renew_vae_resnet_paths(resnets)
+        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
+        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
+
+    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
+    paths = renew_vae_attention_paths(mid_attentions)
+    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
+    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
+    conv_attn_to_linear(new_checkpoint)
+
+    for i in range(num_up_blocks):
+        block_id = num_up_blocks - 1 - i
+        resnets = [
+            key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
+        ]
+
+        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
+            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
+                f"decoder.up.{block_id}.upsample.conv.weight"
+            ]
+            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
+                f"decoder.up.{block_id}.upsample.conv.bias"
+            ]
+
+        paths = renew_vae_resnet_paths(resnets)
+        meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
+        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
+
+    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
+    num_mid_res_blocks = 2
+    for i in range(1, num_mid_res_blocks + 1):
+        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
+
+        paths = renew_vae_resnet_paths(resnets)
+        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
+        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
+
+    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
+    paths = renew_vae_attention_paths(mid_attentions)
+    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
+    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
+    conv_attn_to_linear(new_checkpoint)
+    return new_checkpoint
+
+
+def convert_ldm_bert_checkpoint(checkpoint, config):
+    def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
+        hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
+        hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
+        hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
+
+        hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
+        hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
+
+    def _copy_linear(hf_linear, pt_linear):
+        hf_linear.weight = pt_linear.weight
+        hf_linear.bias = pt_linear.bias
+
+    def _copy_layer(hf_layer, pt_layer):
+        # copy layer norms
+        _copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
+        _copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
+
+        # copy attn
+        _copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
+
+        # copy MLP
+        pt_mlp = pt_layer[1][1]
+        _copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
+        _copy_linear(hf_layer.fc2, pt_mlp.net[2])
+
+    def _copy_layers(hf_layers, pt_layers):
+        for i, hf_layer in enumerate(hf_layers):
+            if i != 0:
+                i += i
+            pt_layer = pt_layers[i : i + 2]
+            _copy_layer(hf_layer, pt_layer)
+
+    hf_model = LDMBertModel(config).eval()
+
+    # copy  embeds
+    hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
+    hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight
+
+    # copy layer norm
+    _copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
+
+    # copy hidden layers
+    _copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
+
+    _copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
+
+    return hf_model
+
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser()
+
+    parser.add_argument(
+        "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
+    )
+    # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
+    parser.add_argument(
+        "--original_config_file",
+        default=None,
+        type=str,
+        help="The YAML config file corresponding to the original architecture.",
+    )
+    parser.add_argument(
+        "--scheduler_type",
+        default="pndm",
+        type=str,
+        help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim']",
+    )
+    parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
+
+    args = parser.parse_args()
+
+    if args.original_config_file is None:
+        os.system(
+            "wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
+        )
+        args.original_config_file = "./v1-inference.yaml"
+
+    original_config = OmegaConf.load(args.original_config_file)
+    checkpoint = torch.load(args.checkpoint_path)["state_dict"]
+
+    num_train_timesteps = original_config.model.params.timesteps
+    beta_start = original_config.model.params.linear_start
+    beta_end = original_config.model.params.linear_end
+    if args.scheduler_type == "pndm":
+        scheduler = PNDMScheduler(
+            beta_end=beta_end,
+            beta_schedule="scaled_linear",
+            beta_start=beta_start,
+            num_train_timesteps=num_train_timesteps,
+            skip_prk_steps=True,
+        )
+    elif args.scheduler_type == "lms":
+        scheduler = LMSDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear")
+    elif args.scheduler_type == "ddim":
+        scheduler = DDIMScheduler(
+            beta_start=beta_start,
+            beta_end=beta_end,
+            beta_schedule="scaled_linear",
+            clip_sample=False,
+            set_alpha_to_one=False,
+        )
+    else:
+        raise ValueError(f"Scheduler of type {args.scheduler_type} doesn't exist!")
+
+    # Convert the UNet2DConditionModel model.
+    unet_config = create_unet_diffusers_config(original_config)
+    converted_unet_checkpoint = convert_ldm_unet_checkpoint(checkpoint, unet_config)
+
+    unet = UNet2DConditionModel(**unet_config)
+    unet.load_state_dict(converted_unet_checkpoint)
+
+    # Convert the VAE model.
+    vae_config = create_vae_diffusers_config(original_config)
+    converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
+
+    vae = AutoencoderKL(**vae_config)
+    vae.load_state_dict(converted_vae_checkpoint)
+
+    # Convert the text model.
+    text_model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
+    if text_model_type == "FrozenCLIPEmbedder":
+        text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
+        tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
+        safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
+        feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker")
+        pipe = StableDiffusionPipeline(
+            vae=vae,
+            text_encoder=text_model,
+            tokenizer=tokenizer,
+            unet=unet,
+            scheduler=scheduler,
+            safety_checker=safety_checker,
+            feature_extractor=feature_extractor,
+        )
+    else:
+        text_config = create_ldm_bert_config(original_config)
+        text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
+        tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
+        pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
+
+    pipe.save_pretrained(args.dump_path)
-- 
cgit v1.2.3-70-g09d2