From 83808fe00ac891ad2f625388d144c318b2cb5bfe Mon Sep 17 00:00:00 2001 From: Volpeon Date: Sat, 14 Jan 2023 21:53:07 +0100 Subject: WIP: Modularization ("free(): invalid pointer" my ass) --- training/functional.py | 365 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 365 insertions(+) create mode 100644 training/functional.py (limited to 'training/functional.py') diff --git a/training/functional.py b/training/functional.py new file mode 100644 index 0000000..2d81eca --- /dev/null +++ b/training/functional.py @@ -0,0 +1,365 @@ +import math +from contextlib import _GeneratorContextManager, nullcontext +from typing import Callable, Any, Tuple, Union + +import torch +import torch.nn.functional as F +from torch.utils.data import DataLoader + +from accelerate import Accelerator +from transformers import CLIPTextModel +from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler + +from tqdm.auto import tqdm + +from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion +from models.clip.embeddings import ManagedCLIPTextEmbeddings, patch_managed_embeddings +from models.clip.util import get_extended_embeddings +from models.clip.tokenizer import MultiCLIPTokenizer +from training.util import AverageMeter +from trainer.base import Checkpointer + + +def const(result=None): + def fn(*args, **kwargs): + return result + return fn + + +def generate_class_images( + accelerator, + text_encoder, + vae, + unet, + tokenizer, + scheduler, + data_train, + sample_batch_size, + sample_image_size, + sample_steps +): + missing_data = [item for item in data_train if not item.class_image_path.exists()] + + if len(missing_data) == 0: + return + + batched_data = [ + missing_data[i:i+sample_batch_size] + for i in range(0, len(missing_data), sample_batch_size) + ] + + pipeline = VlpnStableDiffusion( + text_encoder=text_encoder, + vae=vae, + unet=unet, + tokenizer=tokenizer, + scheduler=scheduler, + ).to(accelerator.device) + pipeline.set_progress_bar_config(dynamic_ncols=True) + + with torch.inference_mode(): + for batch in batched_data: + image_name = [item.class_image_path for item in batch] + prompt = [item.cprompt for item in batch] + nprompt = [item.nprompt for item in batch] + + images = pipeline( + prompt=prompt, + negative_prompt=nprompt, + height=sample_image_size, + width=sample_image_size, + num_inference_steps=sample_steps + ).images + + for i, image in enumerate(images): + image.save(image_name[i]) + + del pipeline + + if torch.cuda.is_available(): + torch.cuda.empty_cache() + + +def get_models(pretrained_model_name_or_path: str): + tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer') + text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') + vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae') + unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet') + noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler') + sample_scheduler = DPMSolverMultistepScheduler.from_pretrained( + pretrained_model_name_or_path, subfolder='scheduler') + + vae.enable_slicing() + vae.set_use_memory_efficient_attention_xformers(True) + unet.set_use_memory_efficient_attention_xformers(True) + + embeddings = patch_managed_embeddings(text_encoder) + + return tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings + + +def add_placeholder_tokens( + tokenizer: MultiCLIPTokenizer, + embeddings: ManagedCLIPTextEmbeddings, + placeholder_tokens: list[str], + initializer_tokens: list[str], + num_vectors: Union[list[int], int] +): + initializer_token_ids = [ + tokenizer.encode(token, add_special_tokens=False) + for token in initializer_tokens + ] + placeholder_token_ids = tokenizer.add_multi_tokens(placeholder_tokens, num_vectors) + + embeddings.resize(len(tokenizer)) + + for (placeholder_token_id, initializer_token_id) in zip(placeholder_token_ids, initializer_token_ids): + embeddings.add_embed(placeholder_token_id, initializer_token_id) + + return placeholder_token_ids, initializer_token_ids + + +def loss_step( + vae: AutoencoderKL, + noise_scheduler: DDPMScheduler, + unet: UNet2DConditionModel, + text_encoder: CLIPTextModel, + prior_loss_weight: float, + seed: int, + step: int, + batch: dict[str, Any], + eval: bool = False +): + # Convert images to latent space + latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach() + latents = latents * 0.18215 + + generator = torch.Generator(device=latents.device).manual_seed(seed + step) if eval else None + + # Sample noise that we'll add to the latents + noise = torch.randn( + latents.shape, + dtype=latents.dtype, + layout=latents.layout, + device=latents.device, + generator=generator + ) + bsz = latents.shape[0] + # Sample a random timestep for each image + timesteps = torch.randint( + 0, + noise_scheduler.config.num_train_timesteps, + (bsz,), + generator=generator, + device=latents.device, + ) + timesteps = timesteps.long() + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + noisy_latents = noisy_latents.to(dtype=unet.dtype) + + # Get the text embedding for conditioning + encoder_hidden_states = get_extended_embeddings( + text_encoder, + batch["input_ids"], + batch["attention_mask"] + ) + encoder_hidden_states = encoder_hidden_states.to(dtype=unet.dtype) + + # Predict the noise residual + model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample + + # Get the target for loss depending on the prediction type + if noise_scheduler.config.prediction_type == "epsilon": + target = noise + elif noise_scheduler.config.prediction_type == "v_prediction": + target = noise_scheduler.get_velocity(latents, noise, timesteps) + else: + raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") + + if batch["with_prior"].all(): + # Chunk the noise and model_pred into two parts and compute the loss on each part separately. + model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) + target, target_prior = torch.chunk(target, 2, dim=0) + + # Compute instance loss + loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") + + # Compute prior loss + prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") + + # Add the prior loss to the instance loss. + loss = loss + prior_loss_weight * prior_loss + else: + loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") + + acc = (model_pred == target).float().mean() + + return loss, acc, bsz + + +def train_loop( + accelerator: Accelerator, + optimizer: torch.optim.Optimizer, + lr_scheduler: torch.optim.lr_scheduler._LRScheduler, + model: torch.nn.Module, + checkpointer: Checkpointer, + train_dataloader: DataLoader, + val_dataloader: DataLoader, + loss_step: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]], + sample_frequency: int = 10, + checkpoint_frequency: int = 50, + global_step_offset: int = 0, + num_epochs: int = 100, + on_log: Callable[[], dict[str, Any]] = const({}), + on_train: Callable[[int], _GeneratorContextManager] = const(nullcontext()), + on_before_optimize: Callable[[int], None] = const(), + on_after_optimize: Callable[[float], None] = const(), + on_eval: Callable[[], _GeneratorContextManager] = const(nullcontext()) +): + num_training_steps_per_epoch = math.ceil(len(train_dataloader) / accelerator.gradient_accumulation_steps) + num_val_steps_per_epoch = len(val_dataloader) + + num_training_steps = num_training_steps_per_epoch * num_epochs + num_val_steps = num_val_steps_per_epoch * num_epochs + + global_step = 0 + + avg_loss = AverageMeter() + avg_acc = AverageMeter() + + avg_loss_val = AverageMeter() + avg_acc_val = AverageMeter() + + max_acc_val = 0.0 + + local_progress_bar = tqdm( + range(num_training_steps_per_epoch + num_val_steps_per_epoch), + disable=not accelerator.is_local_main_process, + dynamic_ncols=True + ) + local_progress_bar.set_description(f"Epoch 1 / {num_epochs}") + + global_progress_bar = tqdm( + range(num_training_steps + num_val_steps), + disable=not accelerator.is_local_main_process, + dynamic_ncols=True + ) + global_progress_bar.set_description("Total progress") + + try: + for epoch in range(num_epochs): + if accelerator.is_main_process: + if epoch % sample_frequency == 0: + checkpointer.save_samples(global_step + global_step_offset) + + if epoch % checkpoint_frequency == 0 and epoch != 0: + checkpointer.checkpoint(global_step + global_step_offset, "training") + + local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") + local_progress_bar.reset() + + model.train() + + with on_train(epoch): + for step, batch in enumerate(train_dataloader): + with accelerator.accumulate(model): + loss, acc, bsz = loss_step(step, batch) + + accelerator.backward(loss) + + on_before_optimize(epoch) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad(set_to_none=True) + + avg_loss.update(loss.detach_(), bsz) + avg_acc.update(acc.detach_(), bsz) + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + on_after_optimize(lr_scheduler.get_last_lr()[0]) + + local_progress_bar.update(1) + global_progress_bar.update(1) + + global_step += 1 + + logs = { + "train/loss": avg_loss.avg.item(), + "train/acc": avg_acc.avg.item(), + "train/cur_loss": loss.item(), + "train/cur_acc": acc.item(), + "lr": lr_scheduler.get_last_lr()[0], + } + logs.update(on_log()) + + accelerator.log(logs, step=global_step) + + local_progress_bar.set_postfix(**logs) + + if global_step >= num_training_steps: + break + + accelerator.wait_for_everyone() + + model.eval() + + cur_loss_val = AverageMeter() + cur_acc_val = AverageMeter() + + with torch.inference_mode(), on_eval(): + for step, batch in enumerate(val_dataloader): + loss, acc, bsz = loss_step(step, batch, True) + + loss = loss.detach_() + acc = acc.detach_() + + cur_loss_val.update(loss, bsz) + cur_acc_val.update(acc, bsz) + + avg_loss_val.update(loss, bsz) + avg_acc_val.update(acc, bsz) + + local_progress_bar.update(1) + global_progress_bar.update(1) + + logs = { + "val/loss": avg_loss_val.avg.item(), + "val/acc": avg_acc_val.avg.item(), + "val/cur_loss": loss.item(), + "val/cur_acc": acc.item(), + } + local_progress_bar.set_postfix(**logs) + + logs["val/cur_loss"] = cur_loss_val.avg.item() + logs["val/cur_acc"] = cur_acc_val.avg.item() + + accelerator.log(logs, step=global_step) + + local_progress_bar.clear() + global_progress_bar.clear() + + if accelerator.is_main_process: + if avg_acc_val.avg.item() > max_acc_val: + accelerator.print( + f"Global step {global_step}: Validation accuracy reached new maximum: {max_acc_val:.2e} -> {avg_acc_val.avg.item():.2e}") + checkpointer.checkpoint(global_step + global_step_offset, "milestone") + max_acc_val = avg_acc_val.avg.item() + + # Create the pipeline using using the trained modules and save it. + if accelerator.is_main_process: + print("Finished!") + checkpointer.checkpoint(global_step + global_step_offset, "end") + checkpointer.save_samples(global_step + global_step_offset) + accelerator.end_training() + + except KeyboardInterrupt: + if accelerator.is_main_process: + print("Interrupted") + checkpointer.checkpoint(global_step + global_step_offset, "end") + accelerator.end_training() + quit() -- cgit v1.2.3-54-g00ecf