From 0767c7bc82645186159965c2a6be4278e33c6721 Mon Sep 17 00:00:00 2001 From: Volpeon Date: Thu, 23 Mar 2023 11:07:57 +0100 Subject: Update --- training/functional.py | 7 ++----- training/strategy/dreambooth.py | 8 ++++---- training/strategy/lora.py | 12 ++++++------ training/strategy/ti.py | 4 ++-- 4 files changed, 14 insertions(+), 17 deletions(-) (limited to 'training') diff --git a/training/functional.py b/training/functional.py index ebb48ab..015fe5e 100644 --- a/training/functional.py +++ b/training/functional.py @@ -259,7 +259,7 @@ def snr_weight(noisy_latents, latents, gamma): sigma_mean_sq = F.mse_loss(sigma.float(), zeros.float(), reduction="none").mean([1, 2, 3]) snr = torch.div(alpha_mean_sq, sigma_mean_sq) gamma_over_snr = torch.div(torch.ones_like(snr) * gamma, snr) - snr_weight = torch.minimum(gamma_over_snr, torch.ones_like(gamma_over_snr)).float() + snr_weight = torch.fmin(gamma_over_snr, torch.ones_like(gamma_over_snr)).float() return snr_weight return torch.tensor( @@ -471,10 +471,7 @@ def train_loop( "lr": lr_scheduler.get_last_lr()[0], } if isDadaptation: - logs["lr/d*lr"] = ( - optimizer.param_groups[0]["d"] * - optimizer.param_groups[0]["lr"] - ) + logs["lr/d*lr"] = optimizer.param_groups[0]["d"] * optimizer.param_groups[0]["lr"] logs.update(on_log()) local_progress_bar.set_postfix(**logs) diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index e5e84c8..28fccff 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py @@ -137,8 +137,8 @@ def dreambooth_strategy_callbacks( print("Saving model...") - unet_ = accelerator.unwrap_model(unet, False) - text_encoder_ = accelerator.unwrap_model(text_encoder, False) + unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=False) + text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=False) with ema_context(): pipeline = VlpnStableDiffusion( @@ -160,8 +160,8 @@ def dreambooth_strategy_callbacks( @torch.no_grad() def on_sample(step): with ema_context(): - unet_ = accelerator.unwrap_model(unet, False) - text_encoder_ = accelerator.unwrap_model(text_encoder, False) + unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) + text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) orig_unet_dtype = unet_.dtype orig_text_encoder_dtype = text_encoder_.dtype diff --git a/training/strategy/lora.py b/training/strategy/lora.py index aa75bec..1c8fad6 100644 --- a/training/strategy/lora.py +++ b/training/strategy/lora.py @@ -47,7 +47,6 @@ def lora_strategy_callbacks( save_samples_ = partial( save_samples, accelerator=accelerator, - text_encoder=text_encoder, tokenizer=tokenizer, vae=vae, sample_scheduler=sample_scheduler, @@ -72,6 +71,7 @@ def lora_strategy_callbacks( @contextmanager def on_train(epoch: int): tokenizer.train() + text_encoder.train() yield @contextmanager @@ -89,8 +89,8 @@ def lora_strategy_callbacks( def on_checkpoint(step, postfix): print(f"Saving checkpoint for step {step}...") - unet_ = accelerator.unwrap_model(unet, False) - text_encoder_ = accelerator.unwrap_model(text_encoder, False) + unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=False) + text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=False) lora_config = {} state_dict = get_peft_model_state_dict(unet, state_dict=accelerator.get_state_dict(unet)) @@ -111,10 +111,10 @@ def lora_strategy_callbacks( @torch.no_grad() def on_sample(step): - unet_ = accelerator.unwrap_model(unet, False) - text_encoder_ = accelerator.unwrap_model(text_encoder, False) + unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) + text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) - save_samples_(step=step, unet=unet_) + save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) del unet_ del text_encoder_ diff --git a/training/strategy/ti.py b/training/strategy/ti.py index bd0d178..2038e34 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py @@ -156,8 +156,8 @@ def textual_inversion_strategy_callbacks( @torch.no_grad() def on_sample(step): with ema_context(): - unet_ = accelerator.unwrap_model(unet, False) - text_encoder_ = accelerator.unwrap_model(text_encoder, False) + unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) + text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) orig_unet_dtype = unet_.dtype orig_text_encoder_dtype = text_encoder_.dtype -- cgit v1.2.3-70-g09d2