From 86e908656bcd7585ec45cd930176800f759f146a Mon Sep 17 00:00:00 2001 From: Volpeon Date: Sat, 1 Apr 2023 17:33:00 +0200 Subject: Combined TI with embedding and LoRA --- training/strategy/ti.py | 76 ++++++++++++------------------------------------- 1 file changed, 18 insertions(+), 58 deletions(-) (limited to 'training') diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 19b8d25..33f5fb9 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py @@ -1,6 +1,6 @@ from typing import Optional from functools import partial -from contextlib import contextmanager, nullcontext +from contextlib import contextmanager from pathlib import Path import torch @@ -13,7 +13,6 @@ from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepSch from slugify import slugify from models.clip.tokenizer import MultiCLIPTokenizer -from training.util import EMAModel from training.functional import TrainingStrategy, TrainingCallbacks, save_samples @@ -32,10 +31,6 @@ def textual_inversion_strategy_callbacks( placeholder_tokens: list[str], placeholder_token_ids: list[list[int]], gradient_checkpointing: bool = False, - use_ema: bool = False, - ema_inv_gamma: float = 1.0, - ema_power: int = 1, - ema_max_decay: float = 0.9999, sample_batch_size: int = 1, sample_num_batches: int = 1, sample_num_steps: int = 20, @@ -68,25 +63,6 @@ def textual_inversion_strategy_callbacks( image_size=sample_image_size, ) - if use_ema: - ema_embeddings = EMAModel( - text_encoder.text_model.embeddings.overlay.parameters(), - inv_gamma=ema_inv_gamma, - power=ema_power, - max_value=ema_max_decay, - ) - ema_embeddings.to(accelerator.device) - else: - ema_embeddings = None - - def ema_context(): - if ema_embeddings is not None: - return ema_embeddings.apply_temporary( - text_encoder.text_model.embeddings.overlay.parameters() - ) - else: - return nullcontext() - def on_accum_model(): return text_encoder.text_model.embeddings.overlay @@ -98,50 +74,36 @@ def textual_inversion_strategy_callbacks( @contextmanager def on_eval(): tokenizer.eval() - - with ema_context(): - yield - - @torch.no_grad() - def on_after_optimize(zero_ids, lr: float): - if ema_embeddings is not None: - ema_embeddings.step(text_encoder.text_model.embeddings.overlay.parameters()) - - def on_log(): - if ema_embeddings is not None: - return {"ema_decay": ema_embeddings.decay} - return {} + yield @torch.no_grad() def on_checkpoint(step, postfix): print(f"Saving checkpoint for step {step}...") - with ema_context(): - for (token, ids) in zip(placeholder_tokens, placeholder_token_ids): - text_encoder.text_model.embeddings.save_embed( - ids, - checkpoint_output_dir / f"{slugify(token)}_{step}_{postfix}.bin" - ) + for (token, ids) in zip(placeholder_tokens, placeholder_token_ids): + text_encoder.text_model.embeddings.save_embed( + ids, + checkpoint_output_dir / f"{slugify(token)}_{step}_{postfix}.bin" + ) @torch.no_grad() def on_sample(step): - with ema_context(): - unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) - text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) + unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) + text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) - orig_unet_dtype = unet_.dtype - orig_text_encoder_dtype = text_encoder_.dtype + orig_unet_dtype = unet_.dtype + orig_text_encoder_dtype = text_encoder_.dtype - unet_.to(dtype=weight_dtype) - text_encoder_.to(dtype=weight_dtype) + unet_.to(dtype=weight_dtype) + text_encoder_.to(dtype=weight_dtype) - save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) + save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) - unet_.to(dtype=orig_unet_dtype) - text_encoder_.to(dtype=orig_text_encoder_dtype) + unet_.to(dtype=orig_unet_dtype) + text_encoder_.to(dtype=orig_text_encoder_dtype) - del unet_ - del text_encoder_ + del unet_ + del text_encoder_ if torch.cuda.is_available(): torch.cuda.empty_cache() @@ -150,8 +112,6 @@ def textual_inversion_strategy_callbacks( on_accum_model=on_accum_model, on_train=on_train, on_eval=on_eval, - on_after_optimize=on_after_optimize, - on_log=on_log, on_checkpoint=on_checkpoint, on_sample=on_sample, ) -- cgit v1.2.3-70-g09d2