import torch from .control import AttentionControl class StructuredAttentionControl(AttentionControl): def forward(self, attn, is_cross: bool, place_in_unet: str): return attn def forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) if isinstance(context, list): if self.struct_attn: out = self.struct_qkv(q, context, mask) else: context = torch.cat([context[0], context[1]['k'][0]], dim=0) # use key tensor for context out = self.normal_qkv(q, context, mask) else: context = default(context, x) out = self.normal_qkv(q, context, mask) return self.to_out(out) def struct_qkv(self, q, context, mask): """ context: list of [uc, list of conditional context] """ uc_context = context[0] context_k, context_v = context[1]['k'], context[1]['v'] if isinstance(context_k, list) and isinstance(context_v, list): out = self.multi_qkv(q, uc_context, context_k, context_v, mask) elif isinstance(context_k, torch.Tensor) and isinstance(context_v, torch.Tensor): out = self.heterogeous_qkv(q, uc_context, context_k, context_v, mask) else: raise NotImplementedError return out def multi_qkv(self, q, uc_context, context_k, context_v, mask): h = self.heads assert uc_context.size(0) == context_k[0].size(0) == context_v[0].size(0) true_bs = uc_context.size(0) * h k_uc, v_uc = self.get_kv(uc_context) k_c = [self.to_k(c_k) for c_k in context_k] v_c = [self.to_v(c_v) for c_v in context_v] q = rearrange(q, 'b n (h d) -> (b h) n d', h=h) k_uc = rearrange(k_uc, 'b n (h d) -> (b h) n d', h=h) v_uc = rearrange(v_uc, 'b n (h d) -> (b h) n d', h=h) k_c = [rearrange(k, 'b n (h d) -> (b h) n d', h=h) for k in k_c] # NOTE: modification point v_c = [rearrange(v, 'b n (h d) -> (b h) n d', h=h) for v in v_c] # get composition sim_uc = einsum('b i d, b j d -> b i j', q[:true_bs], k_uc) * self.scale sim_c = [einsum('b i d, b j d -> b i j', q[true_bs:], k) * self.scale for k in k_c] attn_uc = sim_uc.softmax(dim=-1) attn_c = [sim.softmax(dim=-1) for sim in sim_c] # get uc output out_uc = einsum('b i j, b j d -> b i d', attn_uc, v_uc) # get c output if len(v_c) == 1: out_c_collect = [] for attn in attn_c: for v in v_c: out_c_collect.append(einsum('b i j, b j d -> b i d', attn, v)) out_c = sum(out_c_collect) / len(out_c_collect) else: out_c = sum([einsum('b i j, b j d -> b i d', attn, v) for attn, v in zip(attn_c, v_c)]) / len(v_c) out = torch.cat([out_uc, out_c], dim=0) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return out def normal_qkv(self, q, context, mask): h = self.heads k = self.to_k(context) v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return out def heterogeous_qkv(self, q, uc_context, context_k, context_v, mask): h = self.heads k = self.to_k(torch.cat([uc_context, context_k], dim=0)) v = self.to_v(torch.cat([uc_context, context_v], dim=0)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return out def get_kv(self, context): return self.to_k(context), self.to_v(context)