# Copyright 2022 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): """ Ancestral sampling with Euler method steps. for discrete beta schedules. Based on the original k-diffusion implementation by Katherine Crowson: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays. """ @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.00085, # sensible defaults beta_end: float = 0.012, beta_schedule: str = "linear", trained_betas: Optional[np.ndarray] = None, ): if trained_betas is not None: self.betas = torch.from_numpy(trained_betas) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas) self.init_noise_sigma = None # setable values self.num_inference_steps = None timesteps = np.arange(0, num_train_timesteps)[::-1].copy() self.timesteps = torch.from_numpy(timesteps) self.derivatives = [] self.is_scale_input_called = False def scale_model_input( self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], step_index: Union[int, torch.IntTensor] ) -> torch.FloatTensor: """ Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm. Args: sample (`torch.FloatTensor`): input sample timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain Returns: `torch.FloatTensor`: scaled input sample """ sigma = self.sigmas[step_index] sample = sample / ((sigma**2 + 1) ** 0.5) return sample def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ self.num_inference_steps = num_inference_steps self.timesteps = np.linspace(self.num_train_timesteps - 1, 0, num_inference_steps, dtype=float) low_idx = np.floor(self.timesteps).astype(int) high_idx = np.ceil(self.timesteps).astype(int) frac = np.mod(self.timesteps, 1.0) sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx] sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas) self.timesteps = torch.from_numpy(self.timesteps) self.init_noise_sigma = self.sigmas[0] self.derivatives = [] def step( self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: Union[float, torch.FloatTensor], step_index: Union[int, torch.IntTensor], sample: Union[torch.FloatTensor, np.ndarray], return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor` or `np.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ sigma = self.sigmas[step_index] # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise pred_original_sample = sample - sigma * model_output sigma_from = self.sigmas[step_index] sigma_to = self.sigmas[step_index + 1] sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5 sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma self.derivatives.append(derivative) dt = sigma_down - sigma prev_sample = sample + derivative * dt prev_sample = prev_sample + torch.randn_like(prev_sample) * sigma_up if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) self.timesteps = self.timesteps.to(original_samples.device) sigma = self.sigmas[timesteps].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps