# Copyright 2022 TSAIL Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver import math from typing import List, Optional, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin): """ UniPC is a training-free framework designed for the fast sampling of diffusion models, which consists of a corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders. UniPC is by desinged model-agnostic, supporting pixel-space/latent-space DPMs on unconditional/conditional sampling. It can also be applied to both noise prediction model and data prediction model. The corrector UniC can be also applied after any off-the-shelf solvers to increase the order of accuracy. For more details, see the original paper: https://arxiv.org/abs/2302.04867 Currently, we support the multistep UniPC for both noise prediction models and data prediction models. We recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. solver_order (`int`, default `2`): the order of UniPC, also the p in UniPC-p; can be any positive integer. Note that the effective order of accuracy is `solver_order + 1` due to the UniC. We recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) thresholding (`bool`, default `False`): whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). dynamic_thresholding_ratio (`float`, default `0.995`): the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen (https://arxiv.org/abs/2205.11487). sample_max_value (`float`, default `1.0`): the threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`. predict_x0 (`bool`, default `True`): whether to use the updating algrithm on the predicted x0. See https://arxiv.org/abs/2211.01095 for details solver_type (`str`, default `bh1`): the solver type of UniPC. We recommend use `bh1` for unconditional sampling when steps < 10, and use `bh2` otherwise. lower_order_final (`bool`, default `True`): whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10. disable_corrector (`list`, default `[]`): decide which step to disable the corrector. For large guidance scale, the misalignment between the `epsilon_theta(x_t, c)`and `epsilon_theta(x_t^c, c)` might influence the convergence. This can be mitigated by disable the corrector at the first few steps (e.g., disable_corrector=[0]) solver_p (`SchedulerMixin`): can be any other scheduler. If specified, the algorithm will become solver_p + UniC. """ _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, solver_order: int = 2, prediction_type: str = "epsilon", thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, sample_max_value: float = 1.0, predict_x0: bool = True, solver_type: str = "bh1", lower_order_final: bool = True, disable_corrector: List[int] = [], solver_p: SchedulerMixin = None, ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # Currently we only support VP-type noise schedule self.alpha_t = torch.sqrt(self.alphas_cumprod) self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 if solver_type not in ["bh1", "bh2"]: raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") self.predict_x0 = predict_x0 # setable values self.num_inference_steps = None timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() self.timesteps = torch.from_numpy(timesteps) self.model_outputs = [None] * solver_order self.timestep_list = [None] * solver_order self.lower_order_nums = 0 self.disable_corrector = disable_corrector self.solver_p = solver_p def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, optional): the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps timesteps = ( np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1) .round()[::-1][:-1] .copy() .astype(np.int64) ) self.timesteps = torch.from_numpy(timesteps).to(device) self.model_outputs = [ None, ] * self.config.solver_order self.lower_order_nums = 0 if self.solver_p: self.solver_p.set_timesteps(num_inference_steps, device=device) def convert_model_output( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor ): r""" Convert the model output to the corresponding type that the algorithm PC needs. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the converted model output. """ if self.predict_x0: if self.config.prediction_type == "epsilon": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] x0_pred = (sample - sigma_t * model_output) / alpha_t elif self.config.prediction_type == "sample": x0_pred = model_output elif self.config.prediction_type == "v_prediction": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] x0_pred = alpha_t * sample - sigma_t * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction` for the DPMSolverMultistepScheduler." ) if self.config.thresholding: # Dynamic thresholding in https://arxiv.org/abs/2205.11487 orig_dtype = x0_pred.dtype if orig_dtype not in [torch.float, torch.double]: x0_pred = x0_pred.float() dynamic_max_val = torch.quantile( torch.abs(x0_pred).reshape((x0_pred.shape[0], -1)), self.config.dynamic_thresholding_ratio, dim=1 ) dynamic_max_val = torch.maximum( dynamic_max_val, self.config.sample_max_value * torch.ones_like(dynamic_max_val).to(dynamic_max_val.device), )[(...,) + (None,) * (x0_pred.ndim - 1)] x0_pred = torch.clamp(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val x0_pred = x0_pred.type(orig_dtype) return x0_pred else: if self.config.prediction_type == "epsilon": return model_output elif self.config.prediction_type == "sample": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] epsilon = (sample - alpha_t * model_output) / sigma_t return epsilon elif self.config.prediction_type == "v_prediction": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] epsilon = alpha_t * model_output + sigma_t * sample return epsilon else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction` for the DPMSolverMultistepScheduler." ) def multistep_uni_p_bh_update( self, model_output: torch.FloatTensor, prev_timestep: int, sample: torch.FloatTensor, order: int, ): """ One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified. Args: model_output (`torch.FloatTensor`): direct outputs from learned diffusion model at the current timestep. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. order (`int`): the order of UniP at this step, also the p in UniPC-p. Returns: `torch.FloatTensor`: the sample tensor at the previous timestep. """ timestep_list = self.timestep_list model_output_list = self.model_outputs s0, t = self.timestep_list[-1], prev_timestep m0 = model_output_list[-1] x = sample if self.solver_p: x_t = self.solver_p.step(model_output, s0, x).prev_sample return x_t lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0] alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] h = lambda_t - lambda_s0 device = sample.device rks = [] D1s = [] for i in range(1, order): si = timestep_list[-(i + 1)] mi = model_output_list[-(i + 1)] lambda_si = self.lambda_t[si] rk = ((lambda_si - lambda_s0) / h) rks.append(rk) D1s.append((mi - m0) / rk) rks.append(1.) rks = torch.tensor(rks, device=device) R = [] b = [] hh = -h if self.predict_x0 else h h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 h_phi_k = h_phi_1 / hh - 1 factorial_i = 1 if self.config.solver_type == 'bh1': B_h = hh elif self.config.solver_type == 'bh2': B_h = torch.expm1(hh) else: raise NotImplementedError() for i in range(1, order + 1): R.append(torch.pow(rks, i - 1)) b.append(h_phi_k * factorial_i / B_h) factorial_i *= (i + 1) h_phi_k = h_phi_k / hh - 1 / factorial_i R = torch.stack(R) b = torch.tensor(b, device=device) if len(D1s) > 0: D1s = torch.stack(D1s, dim=1) # (B, K) # for order 2, we use a simplified version if order == 2: rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device) else: rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) else: D1s = None if self.predict_x0: x_t_ = ( sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 ) if D1s is not None: pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) else: pred_res = 0 x_t = x_t_ - alpha_t * B_h * pred_res else: x_t_ = ( alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 ) if D1s is not None: pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) else: pred_res = 0 x_t = x_t_ - sigma_t * B_h * pred_res x_t = x_t.to(x.dtype) return x_t def multistep_uni_c_bh_update( self, this_model_output: torch.FloatTensor, this_timestep: int, last_sample: torch.FloatTensor, this_sample: torch.FloatTensor, order: int, ): """ One step for the UniC (B(h) version). Args: this_model_output (`torch.FloatTensor`): the model outputs at `x_t` this_timestep (`int`): the current timestep `t` last_sample (`torch.FloatTensor`): the generated sample before the last predictor: `x_{t-1}` this_sample (`torch.FloatTensor`): the generated sample after the last predictor: `x_{t}` order (`int`): the `p` of UniC-p at this step. Note that the effective order of accuracy should be order + 1 Returns: `torch.FloatTensor`: the corrected sample tensor at the current timestep. """ timestep_list = self.timestep_list model_output_list = self.model_outputs s0, t = timestep_list[-1], this_timestep m0 = model_output_list[-1] x = last_sample x_t = this_sample model_t = this_model_output lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0] alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] h = lambda_t - lambda_s0 device = this_sample.device rks = [] D1s = [] for i in range(1, order): si = timestep_list[-(i + 1)] mi = model_output_list[-(i + 1)] lambda_si = self.lambda_t[si] rk = ((lambda_si - lambda_s0) / h) rks.append(rk) D1s.append((mi - m0) / rk) rks.append(1.) rks = torch.tensor(rks, device=device) R = [] b = [] hh = -h if self.predict_x0 else h h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 h_phi_k = h_phi_1 / hh - 1 factorial_i = 1 if self.config.solver_type == 'bh1': B_h = hh elif self.config.solver_type == 'bh2': B_h = torch.expm1(hh) else: raise NotImplementedError() for i in range(1, order + 1): R.append(torch.pow(rks, i - 1)) b.append(h_phi_k * factorial_i / B_h) factorial_i *= (i + 1) h_phi_k = h_phi_k / hh - 1 / factorial_i R = torch.stack(R) b = torch.tensor(b, device=device) if len(D1s) > 0: D1s = torch.stack(D1s, dim=1) else: D1s = None # for order 1, we use a simplified version if order == 1: rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device) else: rhos_c = torch.linalg.solve(R, b) if self.predict_x0: x_t_ = ( sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 ) if D1s is not None: corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) else: corr_res = 0 D1_t = (model_t - m0) x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t) else: x_t_ = ( alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 ) if D1s is not None: corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) else: corr_res = 0 D1_t = (model_t - m0) x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t) x_t = x_t.to(x.dtype) return x_t def step( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, return_dict: bool = True, ): # -> Union[SchedulerOutput, Tuple]: """ Step function propagating the sample with the multistep UniPC. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) step_index = (self.timesteps == timestep).nonzero() if len(step_index) == 0: step_index = len(self.timesteps) - 1 else: step_index = step_index.item() use_corrector = step_index > 0 and step_index - 1 not in self.disable_corrector # step_index not in self.disable_corrector model_output_convert = self.convert_model_output(model_output, timestep, sample) if use_corrector: sample = self.multistep_uni_c_bh_update( this_model_output=model_output_convert, this_timestep=timestep, last_sample=self.last_sample, this_sample=sample, order=self.this_order, ) # now prepare to run the predictor prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1] for i in range(self.config.solver_order - 1): self.model_outputs[i] = self.model_outputs[i + 1] self.timestep_list[i] = self.timestep_list[i + 1] self.model_outputs[-1] = model_output_convert self.timestep_list[-1] = timestep if self.config.lower_order_final: this_order = min(self.config.solver_order, len(self.timesteps) - step_index) else: this_order = self.config.solver_order self.this_order = min(this_order, self.lower_order_nums + 1) # warmup for multistep assert self.this_order > 0 self.last_sample = sample prev_sample = self.multistep_uni_p_bh_update( model_output=model_output, # pass the original non-converted model output, in case solver-p is used prev_timestep=prev_timestep, sample=sample, order=self.this_order, ) if self.lower_order_nums < self.config.solver_order: self.lower_order_nums += 1 if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs): # -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): input sample Returns: `torch.FloatTensor`: scaled input sample """ return sample def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor, ): # -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps