import argparse import datetime import logging import itertools from pathlib import Path from functools import partial import math import torch import torch.utils.checkpoint from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import LoggerType, set_seed from peft import LoraConfig, LoraModel import transformers import numpy as np from slugify import slugify from util.files import load_config, load_embeddings_from_dir from data.csv import VlpnDataModule, keyword_filter from training.functional import train, add_placeholder_tokens, get_models from training.strategy.lora import lora_strategy from training.optimization import get_scheduler from training.util import save_args # https://github.com/huggingface/peft/blob/main/examples/lora_dreambooth/train_dreambooth.py UNET_TARGET_MODULES = ["to_q", "to_v", "query", "value"] TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"] logger = get_logger(__name__) torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True def parse_args(): parser = argparse.ArgumentParser( description="Simple example of a training script." ) parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--train_data_file", type=str, default=None, help="A folder containing the training data." ) parser.add_argument( "--train_data_template", type=str, default="template", ) parser.add_argument( "--train_set_pad", type=int, default=None, help="The number to fill train dataset items up to." ) parser.add_argument( "--valid_set_pad", type=int, default=None, help="The number to fill validation dataset items up to." ) parser.add_argument( "--project", type=str, default=None, help="The name of the current project.", ) parser.add_argument( "--auto_cycles", type=int, default=1, help="How many cycles to run automatically." ) parser.add_argument( "--cycle_decay", type=float, default=1.0, help="Learning rate decay per cycle." ) parser.add_argument( "--placeholder_tokens", type=str, nargs='*', help="A token to use as a placeholder for the concept.", ) parser.add_argument( "--initializer_tokens", type=str, nargs='*', help="A token to use as initializer word." ) parser.add_argument( "--filter_tokens", type=str, nargs='*', help="Tokens to filter the dataset by." ) parser.add_argument( "--initializer_noise", type=float, default=0, help="Noise to apply to the initializer word" ) parser.add_argument( "--alias_tokens", type=str, nargs='*', default=[], help="Tokens to create an alias for." ) parser.add_argument( "--inverted_initializer_tokens", type=str, nargs='*', help="A token to use as initializer word." ) parser.add_argument( "--num_vectors", type=int, nargs='*', help="Number of vectors per embedding." ) parser.add_argument( "--exclude_collections", type=str, nargs='*', help="Exclude all items with a listed collection.", ) parser.add_argument( "--num_buckets", type=int, default=2, help="Number of aspect ratio buckets in either direction.", ) parser.add_argument( "--progressive_buckets", action="store_true", help="Include images in smaller buckets as well.", ) parser.add_argument( "--bucket_step_size", type=int, default=64, help="Step size between buckets.", ) parser.add_argument( "--bucket_max_pixels", type=int, default=None, help="Maximum pixels per bucket.", ) parser.add_argument( "--tag_dropout", type=float, default=0, help="Tag dropout probability.", ) parser.add_argument( "--no_tag_shuffle", action="store_true", help="Shuffle tags.", ) parser.add_argument( "--guidance_scale", type=float, default=0, ) parser.add_argument( "--num_class_images", type=int, default=0, help="How many class images to generate." ) parser.add_argument( "--class_image_dir", type=str, default="cls", help="The directory where class images will be saved.", ) parser.add_argument( "--output_dir", type=str, default="output/lora", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--embeddings_dir", type=str, default=None, help="The embeddings directory where Textual Inversion embeddings are stored.", ) parser.add_argument( "--train_dir_embeddings", action="store_true", help="Train embeddings loaded from embeddings directory.", ) parser.add_argument( "--collection", type=str, nargs='*', help="A collection to filter the dataset.", ) parser.add_argument( "--seed", type=int, default=None, help="A seed for reproducible training." ) parser.add_argument( "--resolution", type=int, default=768, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--offset_noise_strength", type=float, default=0, help="Perlin offset noise strength.", ) parser.add_argument( "--num_train_epochs", type=int, default=None ) parser.add_argument( "--num_train_steps", type=int, default=2000 ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lora_r", type=int, default=8, help="Lora rank, only used if use_lora is True" ) parser.add_argument( "--lora_alpha", type=int, default=32, help="Lora alpha, only used if use_lora is True" ) parser.add_argument( "--lora_dropout", type=float, default=0.0, help="Lora dropout, only used if use_lora is True" ) parser.add_argument( "--lora_bias", type=str, default="none", help="Bias type for Lora. Can be 'none', 'all' or 'lora_only', only used if use_lora is True", ) parser.add_argument( "--lora_text_encoder_r", type=int, default=8, help="Lora rank for text encoder, only used if `use_lora` and `train_text_encoder` are True", ) parser.add_argument( "--lora_text_encoder_alpha", type=int, default=32, help="Lora alpha for text encoder, only used if `use_lora` and `train_text_encoder` are True", ) parser.add_argument( "--lora_text_encoder_dropout", type=float, default=0.0, help="Lora dropout for text encoder, only used if `use_lora` and `train_text_encoder` are True", ) parser.add_argument( "--lora_text_encoder_bias", type=str, default="none", help="Bias type for Lora. Can be 'none', 'all' or 'lora_only', only used if use_lora and `train_text_encoder` are True", ) parser.add_argument( "--find_lr", action="store_true", help="Automatically find a learning rate (no training).", ) parser.add_argument( "--learning_rate_unet", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--learning_rate_text", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--learning_rate_emb", type=float, default=1e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="one_cycle", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "one_cycle"], help='The scheduler type to use.', ) parser.add_argument( "--lr_warmup_epochs", type=int, default=10, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_mid_point", type=float, default=0.3, help="OneCycle schedule mid point." ) parser.add_argument( "--lr_cycles", type=int, default=None, help="Number of restart cycles in the lr scheduler (if supported)." ) parser.add_argument( "--lr_warmup_func", type=str, default="cos", choices=["linear", "cos"], ) parser.add_argument( "--lr_warmup_exp", type=int, default=1, help='If lr_warmup_func is "cos", exponent to modify the function' ) parser.add_argument( "--lr_annealing_func", type=str, default="cos", choices=["linear", "half_cos", "cos"], ) parser.add_argument( "--lr_annealing_exp", type=int, default=3, help='If lr_annealing_func is "half_cos" or "cos", exponent to modify the function' ) parser.add_argument( "--lr_min_lr", type=float, default=0.04, help="Minimum learning rate in the lr scheduler." ) parser.add_argument( "--optimizer", type=str, default="adan", choices=["adam", "adam8bit", "adan", "lion", "dadam", "dadan", "adafactor"], help='Optimizer to use' ) parser.add_argument( "--dadaptation_d0", type=float, default=1e-6, help="The d0 parameter for Dadaptation optimizers." ) parser.add_argument( "--adam_beta1", type=float, default=None, help="The beta1 parameter for the Adam optimizer." ) parser.add_argument( "--adam_beta2", type=float, default=None, help="The beta2 parameter for the Adam optimizer." ) parser.add_argument( "--adam_weight_decay", type=float, default=2e-2, help="Weight decay to use." ) parser.add_argument( "--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer" ) parser.add_argument( "--adam_amsgrad", type=bool, default=False, help="Amsgrad value for the Adam optimizer" ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument( "--lora_rank", type=int, default=256, help="LoRA rank.", ) parser.add_argument( "--sample_frequency", type=int, default=1, help="How often to save a checkpoint and sample image", ) parser.add_argument( "--sample_num", type=int, default=None, help="How often to save a checkpoint and sample image (in number of samples)", ) parser.add_argument( "--sample_image_size", type=int, default=768, help="Size of sample images", ) parser.add_argument( "--sample_batches", type=int, default=1, help="Number of sample batches to generate per checkpoint", ) parser.add_argument( "--sample_batch_size", type=int, default=1, help="Number of samples to generate per batch", ) parser.add_argument( "--valid_set_size", type=int, default=None, help="Number of images in the validation dataset." ) parser.add_argument( "--valid_set_repeat", type=int, default=1, help="Times the images in the validation dataset are repeated." ) parser.add_argument( "--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_steps", type=int, default=10, help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", ) parser.add_argument( "--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss." ) parser.add_argument( "--emb_dropout", type=float, default=0, help="Embedding dropout probability.", ) parser.add_argument( "--use_emb_decay", action="store_true", help="Whether to use embedding decay." ) parser.add_argument( "--emb_decay_target", default=0.4, type=float, help="Embedding decay target." ) parser.add_argument( "--emb_decay", default=1e+2, type=float, help="Embedding decay factor." ) parser.add_argument( "--max_grad_norm", default=1.0, type=float, help="Max gradient norm." ) parser.add_argument( "--noise_timesteps", type=int, default=1000, ) parser.add_argument( "--config", type=str, default=None, help="Path to a JSON configuration file containing arguments for invoking this script." ) args = parser.parse_args() if args.config is not None: args = load_config(args.config) args = parser.parse_args(namespace=argparse.Namespace(**args)) if args.train_data_file is None: raise ValueError("You must specify --train_data_file") if args.pretrained_model_name_or_path is None: raise ValueError("You must specify --pretrained_model_name_or_path") if args.project is None: raise ValueError("You must specify --project") if args.initializer_tokens is None: args.initializer_tokens = [] if args.placeholder_tokens is None: args.placeholder_tokens = [] if isinstance(args.placeholder_tokens, str): args.placeholder_tokens = [args.placeholder_tokens] if isinstance(args.initializer_tokens, str): args.initializer_tokens = [args.initializer_tokens] * len(args.placeholder_tokens) if len(args.placeholder_tokens) == 0: args.placeholder_tokens = [f"<*{i}>" for i in range(len(args.initializer_tokens))] if len(args.initializer_tokens) == 0: args.initializer_tokens = args.placeholder_tokens.copy() if len(args.placeholder_tokens) != len(args.initializer_tokens): raise ValueError("--placeholder_tokens and --initializer_tokens must have the same number of items") if isinstance(args.inverted_initializer_tokens, str): args.inverted_initializer_tokens = [args.inverted_initializer_tokens] * len(args.placeholder_tokens) if isinstance(args.inverted_initializer_tokens, list) and len(args.inverted_initializer_tokens) != 0: args.placeholder_tokens += [f"inv_{t}" for t in args.placeholder_tokens] args.initializer_tokens += args.inverted_initializer_tokens if isinstance(args.num_vectors, int): args.num_vectors = [args.num_vectors] * len(args.placeholder_tokens) if isinstance(args.num_vectors, list) and len(args.placeholder_tokens) != len(args.num_vectors): raise ValueError("--placeholder_tokens and --num_vectors must have the same number of items") if args.alias_tokens is None: args.alias_tokens = [] if not isinstance(args.alias_tokens, list) or len(args.alias_tokens) % 2 != 0: raise ValueError("--alias_tokens must be a list with an even number of items") if args.filter_tokens is None: args.filter_tokens = args.placeholder_tokens.copy() if isinstance(args.filter_tokens, str): args.filter_tokens = [args.filter_tokens] if isinstance(args.collection, str): args.collection = [args.collection] if isinstance(args.exclude_collections, str): args.exclude_collections = [args.exclude_collections] if args.output_dir is None: raise ValueError("You must specify --output_dir") if args.adam_beta1 is None: if args.optimizer in ('adam', 'adam8bit'): args.adam_beta1 = 0.9 elif args.optimizer == 'lion': args.adam_beta1 = 0.95 if args.adam_beta2 is None: if args.optimizer in ('adam', 'adam8bit'): args.adam_beta2 = 0.999 elif args.optimizer == 'lion': args.adam_beta2 = 0.98 return args def main(): args = parse_args() now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") output_dir = Path(args.output_dir) / slugify(args.project) / now output_dir.mkdir(parents=True, exist_ok=True) accelerator = Accelerator( log_with=LoggerType.TENSORBOARD, project_dir=f"{output_dir}", mixed_precision=args.mixed_precision ) weight_dtype = torch.float32 if args.mixed_precision == "fp16": weight_dtype = torch.float16 elif args.mixed_precision == "bf16": weight_dtype = torch.bfloat16 logging.basicConfig(filename=output_dir / "log.txt", level=logging.DEBUG) if args.seed is None: args.seed = torch.random.seed() >> 32 set_seed(args.seed) save_args(output_dir, args) tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings = get_models( args.pretrained_model_name_or_path, args.emb_dropout) unet_config = LoraConfig( r=args.lora_r, lora_alpha=args.lora_alpha, target_modules=UNET_TARGET_MODULES, lora_dropout=args.lora_dropout, bias=args.lora_bias, ) unet = LoraModel(unet_config, unet) text_encoder_config = LoraConfig( r=args.lora_text_encoder_r, lora_alpha=args.lora_text_encoder_alpha, target_modules=TEXT_ENCODER_TARGET_MODULES, lora_dropout=args.lora_text_encoder_dropout, bias=args.lora_text_encoder_bias, ) text_encoder = LoraModel(text_encoder_config, text_encoder) vae.enable_slicing() vae.set_use_memory_efficient_attention_xformers(True) unet.enable_xformers_memory_efficient_attention() if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if len(args.alias_tokens) != 0: alias_placeholder_tokens = args.alias_tokens[::2] alias_initializer_tokens = args.alias_tokens[1::2] added_tokens, added_ids = add_placeholder_tokens( tokenizer=tokenizer, embeddings=embeddings, placeholder_tokens=alias_placeholder_tokens, initializer_tokens=alias_initializer_tokens ) embeddings.persist() print(f"Added {len(added_tokens)} aliases: {list(zip(alias_placeholder_tokens, added_tokens, alias_initializer_tokens, added_ids))}") placeholder_token_ids = [] if args.embeddings_dir is not None: embeddings_dir = Path(args.embeddings_dir) if not embeddings_dir.exists() or not embeddings_dir.is_dir(): raise ValueError("--embeddings_dir must point to an existing directory") added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") if args.train_dir_embeddings: args.placeholder_tokens = added_tokens placeholder_token_ids = added_ids print("Training embeddings from embeddings dir") else: embeddings.persist() if not args.train_dir_embeddings: placeholder_token_ids, initializer_token_ids = add_placeholder_tokens( tokenizer=tokenizer, embeddings=embeddings, placeholder_tokens=args.placeholder_tokens, initializer_tokens=args.initializer_tokens, num_vectors=args.num_vectors, initializer_noise=args.initializer_noise, ) stats = list(zip( args.placeholder_tokens, placeholder_token_ids, args.initializer_tokens, initializer_token_ids )) print(f"Training embeddings: {stats}") if args.scale_lr: args.learning_rate_unet = ( args.learning_rate_unet * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) args.learning_rate_text = ( args.learning_rate_text * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) args.learning_rate_emb = ( args.learning_rate_emb * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) if args.find_lr: args.learning_rate_unet = 1e-6 args.learning_rate_text = 1e-6 args.learning_rate_emb = 1e-6 args.lr_scheduler = "exponential_growth" if args.optimizer == 'adam8bit': try: import bitsandbytes as bnb except ImportError: raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") create_optimizer = partial( bnb.optim.AdamW8bit, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, amsgrad=args.adam_amsgrad, ) elif args.optimizer == 'adam': create_optimizer = partial( torch.optim.AdamW, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, amsgrad=args.adam_amsgrad, ) elif args.optimizer == 'adan': try: import timm.optim except ImportError: raise ImportError("To use Adan, please install the PyTorch Image Models library: `pip install timm`.") create_optimizer = partial( timm.optim.Adan, weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, no_prox=True, ) elif args.optimizer == 'lion': try: import lion_pytorch except ImportError: raise ImportError("To use Lion, please install the lion_pytorch library: `pip install lion-pytorch`.") create_optimizer = partial( lion_pytorch.Lion, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, use_triton=True, ) elif args.optimizer == 'adafactor': create_optimizer = partial( transformers.optimization.Adafactor, weight_decay=args.adam_weight_decay, scale_parameter=True, relative_step=True, warmup_init=True, ) args.lr_scheduler = "adafactor" args.lr_min_lr = args.learning_rate_unet args.learning_rate_unet = None args.learning_rate_text = None args.learning_rate_emb = None elif args.optimizer == 'dadam': try: import dadaptation except ImportError: raise ImportError("To use DAdaptAdam, please install the dadaptation library: `pip install dadaptation`.") create_optimizer = partial( dadaptation.DAdaptAdam, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, decouple=True, d0=args.dadaptation_d0, ) args.learning_rate_unet = 1.0 args.learning_rate_text = 1.0 args.learning_rate_emb = 1.0 elif args.optimizer == 'dadan': try: import dadaptation except ImportError: raise ImportError("To use DAdaptAdan, please install the dadaptation library: `pip install dadaptation`.") create_optimizer = partial( dadaptation.DAdaptAdan, weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, d0=args.dadaptation_d0, ) args.learning_rate_unet = 1.0 args.learning_rate_text = 1.0 args.learning_rate_emb = 1.0 else: raise ValueError(f"Unknown --optimizer \"{args.optimizer}\"") trainer = partial( train, accelerator=accelerator, unet=unet, text_encoder=text_encoder, tokenizer=tokenizer, vae=vae, noise_scheduler=noise_scheduler, dtype=weight_dtype, seed=args.seed, guidance_scale=args.guidance_scale, prior_loss_weight=args.prior_loss_weight if args.num_class_images != 0 else 0, no_val=args.valid_set_size == 0, offset_noise_strength=args.offset_noise_strength, sample_scheduler=sample_scheduler, sample_batch_size=args.sample_batch_size, sample_num_batches=args.sample_batches, sample_num_steps=args.sample_steps, sample_image_size=args.sample_image_size, placeholder_tokens=args.placeholder_tokens, placeholder_token_ids=placeholder_token_ids, use_emb_decay=args.use_emb_decay, emb_decay_target=args.emb_decay_target, emb_decay=args.emb_decay, max_grad_norm=args.max_grad_norm, ) data_generator = torch.Generator(device="cpu").manual_seed(args.seed) data_npgenerator = np.random.default_rng(args.seed) create_datamodule = partial( VlpnDataModule, data_file=args.train_data_file, tokenizer=tokenizer, class_subdir=args.class_image_dir, with_guidance=args.guidance_scale != 0, num_class_images=args.num_class_images, size=args.resolution, num_buckets=args.num_buckets, progressive_buckets=args.progressive_buckets, bucket_step_size=args.bucket_step_size, bucket_max_pixels=args.bucket_max_pixels, shuffle=not args.no_tag_shuffle, template_key=args.train_data_template, valid_set_size=args.valid_set_size, train_set_pad=args.train_set_pad, valid_set_pad=args.valid_set_pad, dtype=weight_dtype, generator=data_generator, npgenerator=data_npgenerator, ) create_lr_scheduler = partial( get_scheduler, args.lr_scheduler, min_lr=args.lr_min_lr, warmup_func=args.lr_warmup_func, annealing_func=args.lr_annealing_func, warmup_exp=args.lr_warmup_exp, annealing_exp=args.lr_annealing_exp, cycles=args.lr_cycles, end_lr=1e2, warmup_epochs=args.lr_warmup_epochs, mid_point=args.lr_mid_point, ) # LORA # -------------------------------------------------------------------------------- lora_datamodule = create_datamodule( batch_size=args.train_batch_size, dropout=args.tag_dropout, filter=partial(keyword_filter, None, args.collection, args.exclude_collections), ) lora_datamodule.setup() num_train_epochs = args.num_train_epochs lora_sample_frequency = args.sample_frequency if num_train_epochs is None: num_train_epochs = math.ceil( args.num_train_steps / len(lora_datamodule.train_dataset) ) * args.gradient_accumulation_steps lora_sample_frequency = math.ceil(num_train_epochs * (lora_sample_frequency / args.num_train_steps)) num_training_steps_per_epoch = math.ceil(len(lora_datamodule.train_dataset) / args.gradient_accumulation_steps) num_train_steps = num_training_steps_per_epoch * num_train_epochs if args.sample_num is not None: lora_sample_frequency = math.ceil(num_train_epochs / args.sample_num) group_labels = [] if len(args.placeholder_tokens) != 0: group_labels.append("emb") group_labels += ["unet", "text"] training_iter = 0 learning_rate_emb = args.learning_rate_emb learning_rate_unet = args.learning_rate_unet learning_rate_text = args.learning_rate_text lora_project = "lora" if accelerator.is_main_process: accelerator.init_trackers(lora_project) lora_sample_output_dir = output_dir / lora_project / "samples" while True: if training_iter >= args.auto_cycles: response = input("Run another cycle? [y/n] ") if response.lower().strip() == "n": break print("") print(f"============ LoRA cycle {training_iter + 1} ============") print("") params_to_optimize = [] if len(args.placeholder_tokens) != 0: params_to_optimize.append({ "params": text_encoder.text_model.embeddings.token_embedding.parameters(), "lr": learning_rate_emb, "weight_decay": 0, }) group_labels.append("emb") params_to_optimize += [ { "params": ( param for param in unet.parameters() if param.requires_grad ), "lr": learning_rate_unet, }, { "params": ( param for param in itertools.chain( text_encoder.text_model.encoder.parameters(), text_encoder.text_model.final_layer_norm.parameters(), ) if param.requires_grad ), "lr": learning_rate_text, }, ] lora_optimizer = create_optimizer(params_to_optimize) lora_lr_scheduler = create_lr_scheduler( gradient_accumulation_steps=args.gradient_accumulation_steps, optimizer=lora_optimizer, num_training_steps_per_epoch=len(lora_datamodule.train_dataloader), train_epochs=num_train_epochs, ) lora_checkpoint_output_dir = output_dir / lora_project / f"model_{training_iter + 1}" trainer( strategy=lora_strategy, train_dataloader=lora_datamodule.train_dataloader, val_dataloader=lora_datamodule.val_dataloader, optimizer=lora_optimizer, lr_scheduler=lora_lr_scheduler, num_train_epochs=num_train_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, global_step_offset=training_iter * num_train_steps, initial_samples=training_iter == 0, # -- group_labels=group_labels, sample_output_dir=lora_sample_output_dir, checkpoint_output_dir=lora_checkpoint_output_dir, sample_frequency=lora_sample_frequency, ) training_iter += 1 if learning_rate_emb is not None: learning_rate_emb *= args.cycle_decay if learning_rate_unet is not None: learning_rate_unet *= args.cycle_decay if learning_rate_text is not None: learning_rate_text *= args.cycle_decay accelerator.end_training() if __name__ == "__main__": main()