from typing import Optional import torch import torch.nn as nn from transformers.models.clip import CLIPTextModel, CLIPTextConfig from transformers.models.clip.modeling_clip import CLIPTextEmbeddings def patch_trainable_embeddings(text_encoder: CLIPTextModel, new_ids: list[int]): text_embeddings = TrainableEmbeddings(text_encoder.config, text_encoder.text_model.embeddings, new_ids) text_encoder.text_model.embeddings = text_embeddings class TrainableEmbeddings(CLIPTextEmbeddings): def __init__(self, config: CLIPTextConfig, embeddings: CLIPTextEmbeddings, new_ids: list[int]): super().__init__(config) self.token_embedding = embeddings.token_embedding self.position_embedding = embeddings.position_embedding self.train_indices = torch.tensor(new_ids) self.trainable_embedding = nn.Embedding(self.token_embedding.num_embeddings, self.token_embedding.embedding_dim) self.trainable_embedding.weight.data.zero_() self.trainable_embedding.weight.data[self.train_indices] = self.token_embedding.weight.data[self.train_indices] def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: device = input_ids.device seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: mask = torch.isin(input_ids, self.train_indices.to(device)) inputs_embeds = self.token_embedding(input_ids) inputs_embeds[mask] = self.trainable_embedding(input_ids)[mask] position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings