import math import torch # 2D Perlin noise in PyTorch https://gist.github.com/vadimkantorov/ac1b097753f217c5c11bc2ff396e0a57 def rand_perlin_2d(shape, res, fade=lambda t: 6*t**5 - 15*t**4 + 10*t**3, dtype=None, device=None, generator=None): delta = (res[0] / shape[0], res[1] / shape[1]) d = (shape[0] // res[0], shape[1] // res[1]) grid = torch.stack(torch.meshgrid( torch.arange(0, res[0], delta[0], dtype=dtype, device=device), torch.arange(0, res[1], delta[1], dtype=dtype, device=device), indexing='ij' ), dim=-1) % 1 angles = 2*math.pi*torch.rand(res[0]+1, res[1]+1, generator=generator, dtype=dtype, device=device) gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1) def tile_grads(slice1, slice2): return gradients[ slice1[0]:slice1[1], slice2[0]:slice2[1] ].repeat_interleave(d[0], 0).repeat_interleave(d[1], 1) def dot(grad, shift): return (torch.stack(( grid[:shape[0], :shape[1], 0] + shift[0], grid[:shape[0], :shape[1], 1] + shift[1] ), dim=-1) * grad[:shape[0], :shape[1]]).sum(dim=-1) n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]) n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]) n01 = dot(tile_grads([0, -1], [1, None]), [0, -1]) n11 = dot(tile_grads([1, None], [1, None]), [-1, -1]) t = fade(grid[:shape[0], :shape[1]]) return math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]) def rand_perlin_2d_octaves(shape, res, octaves=1, persistence=0.5, dtype=None, device=None, generator=None): noise = torch.zeros(shape, dtype=dtype, device=device) frequency = 1 amplitude = 1 for _ in range(int(octaves)): noise += amplitude * rand_perlin_2d( shape, (frequency*res[0], frequency*res[1]), dtype=dtype, device=device, generator=generator ) frequency *= 2 amplitude *= persistence return noise def perlin_noise(shape: tuple[int, int, int, int], res=8, octaves=1, dtype=None, device=None, generator=None): return torch.stack([ torch.stack([ rand_perlin_2d_octaves( (shape[2], shape[3]), (res, res), octaves, dtype=dtype, device=device, generator=generator ) for _ in range(shape[1]) ]) for _ in range(shape[0]) ])