diff options
author | Volpeon <git@volpeon.ink> | 2022-12-13 23:09:25 +0100 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2022-12-13 23:09:25 +0100 |
commit | 03303d3bddba5a27a123babdf90863e27501e6f8 (patch) | |
tree | 8266c50f8e474d92ad4b42773cb8eb7730cd24c1 | |
parent | Optimized Textual Inversion training by filtering dataset by existence of add... (diff) | |
download | textual-inversion-diff-03303d3bddba5a27a123babdf90863e27501e6f8.tar.gz textual-inversion-diff-03303d3bddba5a27a123babdf90863e27501e6f8.tar.bz2 textual-inversion-diff-03303d3bddba5a27a123babdf90863e27501e6f8.zip |
Unified loading of TI embeddings
-rw-r--r-- | common.py | 36 | ||||
-rw-r--r-- | dreambooth.py | 26 | ||||
-rw-r--r-- | infer.py | 34 | ||||
-rw-r--r-- | textual_inversion.py | 23 |
4 files changed, 54 insertions, 65 deletions
diff --git a/common.py b/common.py new file mode 100644 index 0000000..8d6b55d --- /dev/null +++ b/common.py | |||
@@ -0,0 +1,36 @@ | |||
1 | from pathlib import Path | ||
2 | import torch | ||
3 | |||
4 | from transformers import CLIPTextModel, CLIPTokenizer | ||
5 | |||
6 | |||
7 | def load_text_embedding(embeddings, token_id, file): | ||
8 | data = torch.load(file, map_location="cpu") | ||
9 | |||
10 | assert len(data.keys()) == 1, 'embedding data has multiple terms in it' | ||
11 | |||
12 | emb = next(iter(data.values())) | ||
13 | if len(emb.shape) == 1: | ||
14 | emb = emb.unsqueeze(0) | ||
15 | |||
16 | embeddings[token_id] = emb | ||
17 | |||
18 | |||
19 | def load_text_embeddings(tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, embeddings_dir: Path): | ||
20 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
21 | return 0 | ||
22 | |||
23 | files = [file for file in embeddings_dir.iterdir() if file.is_file()] | ||
24 | |||
25 | tokens = [file.stem for file in files] | ||
26 | added = tokenizer.add_tokens(tokens) | ||
27 | token_ids = tokenizer.convert_tokens_to_ids(tokens) | ||
28 | |||
29 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
30 | |||
31 | token_embeds = text_encoder.get_input_embeddings().weight.data | ||
32 | |||
33 | for (token_id, file) in zip(token_ids, files): | ||
34 | load_text_embedding(token_embeds, token_id, file) | ||
35 | |||
36 | return added | ||
diff --git a/dreambooth.py b/dreambooth.py index 5521b21..3f45754 100644 --- a/dreambooth.py +++ b/dreambooth.py | |||
@@ -21,6 +21,7 @@ from tqdm.auto import tqdm | |||
21 | from transformers import CLIPTextModel, CLIPTokenizer | 21 | from transformers import CLIPTextModel, CLIPTokenizer |
22 | from slugify import slugify | 22 | from slugify import slugify |
23 | 23 | ||
24 | from common import load_text_embeddings | ||
24 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 25 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
25 | from pipelines.util import set_use_memory_efficient_attention_xformers | 26 | from pipelines.util import set_use_memory_efficient_attention_xformers |
26 | from data.csv import CSVDataModule | 27 | from data.csv import CSVDataModule |
@@ -125,7 +126,7 @@ def parse_args(): | |||
125 | parser.add_argument( | 126 | parser.add_argument( |
126 | "--embeddings_dir", | 127 | "--embeddings_dir", |
127 | type=str, | 128 | type=str, |
128 | default="embeddings_ti", | 129 | default=None, |
129 | help="The embeddings directory where Textual Inversion embeddings are stored.", | 130 | help="The embeddings directory where Textual Inversion embeddings are stored.", |
130 | ) | 131 | ) |
131 | parser.add_argument( | 132 | parser.add_argument( |
@@ -578,8 +579,6 @@ def main(): | |||
578 | basepath = Path(args.output_dir).joinpath(slugify(instance_identifier), now) | 579 | basepath = Path(args.output_dir).joinpath(slugify(instance_identifier), now) |
579 | basepath.mkdir(parents=True, exist_ok=True) | 580 | basepath.mkdir(parents=True, exist_ok=True) |
580 | 581 | ||
581 | embeddings_dir = Path(args.embeddings_dir) | ||
582 | |||
583 | accelerator = Accelerator( | 582 | accelerator = Accelerator( |
584 | log_with=LoggerType.TENSORBOARD, | 583 | log_with=LoggerType.TENSORBOARD, |
585 | logging_dir=f"{basepath}", | 584 | logging_dir=f"{basepath}", |
@@ -629,6 +628,9 @@ def main(): | |||
629 | # Freeze text_encoder and vae | 628 | # Freeze text_encoder and vae |
630 | vae.requires_grad_(False) | 629 | vae.requires_grad_(False) |
631 | 630 | ||
631 | if args.embeddings_dir is not None: | ||
632 | load_text_embeddings(tokenizer, text_encoder, Path(args.embeddings_dir)) | ||
633 | |||
632 | if len(args.placeholder_token) != 0: | 634 | if len(args.placeholder_token) != 0: |
633 | # Convert the initializer_token, placeholder_token to ids | 635 | # Convert the initializer_token, placeholder_token to ids |
634 | initializer_token_ids = torch.stack([ | 636 | initializer_token_ids = torch.stack([ |
@@ -645,24 +647,6 @@ def main(): | |||
645 | text_encoder.resize_token_embeddings(len(tokenizer)) | 647 | text_encoder.resize_token_embeddings(len(tokenizer)) |
646 | 648 | ||
647 | token_embeds = text_encoder.get_input_embeddings().weight.data | 649 | token_embeds = text_encoder.get_input_embeddings().weight.data |
648 | |||
649 | print(f"Token ID mappings:") | ||
650 | for (token_id, token) in zip(placeholder_token_id, args.placeholder_token): | ||
651 | embedding_file = embeddings_dir.joinpath(f"{token}.bin") | ||
652 | embedding_source = "init" | ||
653 | |||
654 | if embedding_file.exists() and embedding_file.is_file(): | ||
655 | embedding_data = torch.load(embedding_file, map_location="cpu") | ||
656 | |||
657 | emb = next(iter(embedding_data.values())) | ||
658 | if len(emb.shape) == 1: | ||
659 | emb = emb.unsqueeze(0) | ||
660 | |||
661 | token_embeds[token_id] = emb | ||
662 | embedding_source = "file" | ||
663 | |||
664 | print(f"- {token_id} {token} ({embedding_source})") | ||
665 | |||
666 | original_token_embeds = token_embeds.clone().to(accelerator.device) | 650 | original_token_embeds = token_embeds.clone().to(accelerator.device) |
667 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | 651 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) |
668 | 652 | ||
@@ -24,6 +24,7 @@ from transformers import CLIPTextModel, CLIPTokenizer | |||
24 | from slugify import slugify | 24 | from slugify import slugify |
25 | 25 | ||
26 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 26 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
27 | from common import load_text_embeddings | ||
27 | 28 | ||
28 | 29 | ||
29 | torch.backends.cuda.matmul.allow_tf32 = True | 30 | torch.backends.cuda.matmul.allow_tf32 = True |
@@ -180,37 +181,6 @@ def save_args(basepath, args, extra={}): | |||
180 | json.dump(info, f, indent=4) | 181 | json.dump(info, f, indent=4) |
181 | 182 | ||
182 | 183 | ||
183 | def load_embeddings_ti(tokenizer, text_encoder, embeddings_dir): | ||
184 | print(f"Loading Textual Inversion embeddings") | ||
185 | |||
186 | embeddings_dir = Path(embeddings_dir) | ||
187 | embeddings_dir.mkdir(parents=True, exist_ok=True) | ||
188 | |||
189 | placeholder_tokens = [file.stem for file in embeddings_dir.iterdir() if file.is_file()] | ||
190 | tokenizer.add_tokens(placeholder_tokens) | ||
191 | |||
192 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
193 | |||
194 | token_embeds = text_encoder.get_input_embeddings().weight.data | ||
195 | |||
196 | for file in embeddings_dir.iterdir(): | ||
197 | if file.is_file(): | ||
198 | placeholder_token = file.stem | ||
199 | placeholder_token_id = tokenizer.convert_tokens_to_ids(placeholder_token) | ||
200 | |||
201 | data = torch.load(file, map_location="cpu") | ||
202 | |||
203 | assert len(data.keys()) == 1, 'embedding file has multiple terms in it' | ||
204 | |||
205 | emb = next(iter(data.values())) | ||
206 | if len(emb.shape) == 1: | ||
207 | emb = emb.unsqueeze(0) | ||
208 | |||
209 | token_embeds[placeholder_token_id] = emb | ||
210 | |||
211 | print(f"Loaded {placeholder_token}") | ||
212 | |||
213 | |||
214 | def create_pipeline(model, ti_embeddings_dir, dtype): | 184 | def create_pipeline(model, ti_embeddings_dir, dtype): |
215 | print("Loading Stable Diffusion pipeline...") | 185 | print("Loading Stable Diffusion pipeline...") |
216 | 186 | ||
@@ -220,7 +190,7 @@ def create_pipeline(model, ti_embeddings_dir, dtype): | |||
220 | unet = UNet2DConditionModel.from_pretrained(model, subfolder='unet', torch_dtype=dtype) | 190 | unet = UNet2DConditionModel.from_pretrained(model, subfolder='unet', torch_dtype=dtype) |
221 | scheduler = DDIMScheduler.from_pretrained(model, subfolder='scheduler', torch_dtype=dtype) | 191 | scheduler = DDIMScheduler.from_pretrained(model, subfolder='scheduler', torch_dtype=dtype) |
222 | 192 | ||
223 | load_embeddings_ti(tokenizer, text_encoder, ti_embeddings_dir) | 193 | load_text_embeddings(tokenizer, text_encoder, Path(ti_embeddings_dir)) |
224 | 194 | ||
225 | pipeline = VlpnStableDiffusion( | 195 | pipeline = VlpnStableDiffusion( |
226 | text_encoder=text_encoder, | 196 | text_encoder=text_encoder, |
diff --git a/textual_inversion.py b/textual_inversion.py index fd4a313..6d8fd77 100644 --- a/textual_inversion.py +++ b/textual_inversion.py | |||
@@ -22,6 +22,7 @@ from tqdm.auto import tqdm | |||
22 | from transformers import CLIPTextModel, CLIPTokenizer | 22 | from transformers import CLIPTextModel, CLIPTokenizer |
23 | from slugify import slugify | 23 | from slugify import slugify |
24 | 24 | ||
25 | from common import load_text_embeddings, load_text_embedding | ||
25 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 26 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
26 | from pipelines.util import set_use_memory_efficient_attention_xformers | 27 | from pipelines.util import set_use_memory_efficient_attention_xformers |
27 | from data.csv import CSVDataModule | 28 | from data.csv import CSVDataModule |
@@ -105,6 +106,12 @@ def parse_args(): | |||
105 | help="The output directory where the model predictions and checkpoints will be written.", | 106 | help="The output directory where the model predictions and checkpoints will be written.", |
106 | ) | 107 | ) |
107 | parser.add_argument( | 108 | parser.add_argument( |
109 | "--embeddings_dir", | ||
110 | type=str, | ||
111 | default=None, | ||
112 | help="The embeddings directory where Textual Inversion embeddings are stored.", | ||
113 | ) | ||
114 | parser.add_argument( | ||
108 | "--seed", | 115 | "--seed", |
109 | type=int, | 116 | type=int, |
110 | default=None, | 117 | default=None, |
@@ -551,6 +558,9 @@ def main(): | |||
551 | unet.enable_gradient_checkpointing() | 558 | unet.enable_gradient_checkpointing() |
552 | text_encoder.gradient_checkpointing_enable() | 559 | text_encoder.gradient_checkpointing_enable() |
553 | 560 | ||
561 | if args.embeddings_dir is not None: | ||
562 | load_text_embeddings(tokenizer, text_encoder, Path(args.embeddings_dir)) | ||
563 | |||
554 | # Convert the initializer_token, placeholder_token to ids | 564 | # Convert the initializer_token, placeholder_token to ids |
555 | initializer_token_ids = torch.stack([ | 565 | initializer_token_ids = torch.stack([ |
556 | torch.tensor(tokenizer.encode(token, add_special_tokens=False)[:1]) | 566 | torch.tensor(tokenizer.encode(token, add_special_tokens=False)[:1]) |
@@ -562,10 +572,6 @@ def main(): | |||
562 | 572 | ||
563 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | 573 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) |
564 | 574 | ||
565 | print(f"Token ID mappings:") | ||
566 | for (token_id, token) in zip(placeholder_token_id, args.placeholder_token): | ||
567 | print(f"- {token_id} {token}") | ||
568 | |||
569 | # Resize the token embeddings as we are adding new special tokens to the tokenizer | 575 | # Resize the token embeddings as we are adding new special tokens to the tokenizer |
570 | text_encoder.resize_token_embeddings(len(tokenizer)) | 576 | text_encoder.resize_token_embeddings(len(tokenizer)) |
571 | 577 | ||
@@ -576,14 +582,7 @@ def main(): | |||
576 | resumepath = Path(args.resume_from).joinpath("checkpoints") | 582 | resumepath = Path(args.resume_from).joinpath("checkpoints") |
577 | 583 | ||
578 | for (token_id, token) in zip(placeholder_token_id, args.placeholder_token): | 584 | for (token_id, token) in zip(placeholder_token_id, args.placeholder_token): |
579 | embedding_file = resumepath.joinpath(f"{token}_{args.global_step}_end.bin") | 585 | load_text_embedding(token_embeds, token_id, resumepath.joinpath(f"{token}_{args.global_step}_end.bin")) |
580 | embedding_data = torch.load(embedding_file, map_location="cpu") | ||
581 | |||
582 | emb = next(iter(embedding_data.values())) | ||
583 | if len(emb.shape) == 1: | ||
584 | emb = emb.unsqueeze(0) | ||
585 | |||
586 | token_embeds[token_id] = emb | ||
587 | 586 | ||
588 | original_token_embeds = token_embeds.clone().to(accelerator.device) | 587 | original_token_embeds = token_embeds.clone().to(accelerator.device) |
589 | 588 | ||