diff options
author | Volpeon <git@volpeon.ink> | 2022-10-03 21:28:52 +0200 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2022-10-03 21:28:52 +0200 |
commit | 46b6c09a18b41edff77c6881529b66733d788abe (patch) | |
tree | 670e7cdda37ba7a010b570398a63dd38e357b6ce | |
parent | Small perf improvements (diff) | |
download | textual-inversion-diff-46b6c09a18b41edff77c6881529b66733d788abe.tar.gz textual-inversion-diff-46b6c09a18b41edff77c6881529b66733d788abe.tar.bz2 textual-inversion-diff-46b6c09a18b41edff77c6881529b66733d788abe.zip |
Dreambooth: Generate specialized class images from input prompts
-rw-r--r-- | data/dreambooth/csv.py | 112 | ||||
-rw-r--r-- | data/dreambooth/prompt.py | 4 | ||||
-rw-r--r-- | data/textual_inversion/csv.py | 3 | ||||
-rw-r--r-- | dreambooth.py | 168 | ||||
-rw-r--r-- | textual_inversion.py | 6 |
5 files changed, 129 insertions, 164 deletions
diff --git a/data/dreambooth/csv.py b/data/dreambooth/csv.py index c0b0067..4ebdc13 100644 --- a/data/dreambooth/csv.py +++ b/data/dreambooth/csv.py | |||
@@ -13,13 +13,11 @@ class CSVDataModule(pl.LightningDataModule): | |||
13 | batch_size, | 13 | batch_size, |
14 | data_file, | 14 | data_file, |
15 | tokenizer, | 15 | tokenizer, |
16 | instance_prompt, | 16 | instance_identifier, |
17 | class_data_root=None, | 17 | class_identifier=None, |
18 | class_prompt=None, | ||
19 | size=512, | 18 | size=512, |
20 | repeats=100, | 19 | repeats=100, |
21 | interpolation="bicubic", | 20 | interpolation="bicubic", |
22 | identifier="*", | ||
23 | center_crop=False, | 21 | center_crop=False, |
24 | valid_set_size=None, | 22 | valid_set_size=None, |
25 | generator=None, | 23 | generator=None, |
@@ -32,13 +30,14 @@ class CSVDataModule(pl.LightningDataModule): | |||
32 | raise ValueError("data_file must be a file") | 30 | raise ValueError("data_file must be a file") |
33 | 31 | ||
34 | self.data_root = self.data_file.parent | 32 | self.data_root = self.data_file.parent |
33 | self.class_root = self.data_root.joinpath("db_cls") | ||
34 | self.class_root.mkdir(parents=True, exist_ok=True) | ||
35 | |||
35 | self.tokenizer = tokenizer | 36 | self.tokenizer = tokenizer |
36 | self.instance_prompt = instance_prompt | 37 | self.instance_identifier = instance_identifier |
37 | self.class_data_root = class_data_root | 38 | self.class_identifier = class_identifier |
38 | self.class_prompt = class_prompt | ||
39 | self.size = size | 39 | self.size = size |
40 | self.repeats = repeats | 40 | self.repeats = repeats |
41 | self.identifier = identifier | ||
42 | self.center_crop = center_crop | 41 | self.center_crop = center_crop |
43 | self.interpolation = interpolation | 42 | self.interpolation = interpolation |
44 | self.valid_set_size = valid_set_size | 43 | self.valid_set_size = valid_set_size |
@@ -48,30 +47,36 @@ class CSVDataModule(pl.LightningDataModule): | |||
48 | 47 | ||
49 | def prepare_data(self): | 48 | def prepare_data(self): |
50 | metadata = pd.read_csv(self.data_file) | 49 | metadata = pd.read_csv(self.data_file) |
51 | image_paths = [os.path.join(self.data_root, f_path) for f_path in metadata['image'].values] | 50 | instance_image_paths = [self.data_root.joinpath(f) for f in metadata['image'].values] |
51 | class_image_paths = [self.class_root.joinpath(Path(f).name) for f in metadata['image'].values] | ||
52 | prompts = metadata['prompt'].values | 52 | prompts = metadata['prompt'].values |
53 | nprompts = metadata['nprompt'].values if 'nprompt' in metadata else [""] * len(image_paths) | 53 | nprompts = metadata['nprompt'].values if 'nprompt' in metadata else [""] * len(instance_image_paths) |
54 | skips = metadata['skip'].values if 'skip' in metadata else [""] * len(image_paths) | 54 | skips = metadata['skip'].values if 'skip' in metadata else [""] * len(instance_image_paths) |
55 | self.data_full = [(i, p, n) for i, p, n, s in zip(image_paths, prompts, nprompts, skips) if s != "x"] | 55 | self.data = [(i, c, p, n) |
56 | for i, c, p, n, s | ||
57 | in zip(instance_image_paths, class_image_paths, prompts, nprompts, skips) | ||
58 | if s != "x"] | ||
56 | 59 | ||
57 | def setup(self, stage=None): | 60 | def setup(self, stage=None): |
58 | valid_set_size = int(len(self.data_full) * 0.2) | 61 | valid_set_size = int(len(self.data) * 0.2) |
59 | if self.valid_set_size: | 62 | if self.valid_set_size: |
60 | valid_set_size = min(valid_set_size, self.valid_set_size) | 63 | valid_set_size = min(valid_set_size, self.valid_set_size) |
61 | train_set_size = len(self.data_full) - valid_set_size | 64 | valid_set_size = max(valid_set_size, 1) |
62 | 65 | train_set_size = len(self.data) - valid_set_size | |
63 | self.data_train, self.data_val = random_split(self.data_full, [train_set_size, valid_set_size], self.generator) | 66 | |
64 | 67 | self.data_train, self.data_val = random_split(self.data, [train_set_size, valid_set_size], self.generator) | |
65 | train_dataset = CSVDataset(self.data_train, self.tokenizer, instance_prompt=self.instance_prompt, | 68 | |
66 | class_data_root=self.class_data_root, class_prompt=self.class_prompt, | 69 | train_dataset = CSVDataset(self.data_train, self.tokenizer, |
67 | size=self.size, interpolation=self.interpolation, identifier=self.identifier, | 70 | instance_identifier=self.instance_identifier, class_identifier=self.class_identifier, |
68 | center_crop=self.center_crop, repeats=self.repeats, batch_size=self.batch_size) | 71 | size=self.size, interpolation=self.interpolation, |
69 | val_dataset = CSVDataset(self.data_val, self.tokenizer, instance_prompt=self.instance_prompt, | 72 | center_crop=self.center_crop, repeats=self.repeats) |
70 | size=self.size, interpolation=self.interpolation, identifier=self.identifier, | 73 | val_dataset = CSVDataset(self.data_val, self.tokenizer, |
71 | center_crop=self.center_crop, batch_size=self.batch_size) | 74 | instance_identifier=self.instance_identifier, |
72 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, | 75 | size=self.size, interpolation=self.interpolation, |
76 | center_crop=self.center_crop, repeats=self.repeats) | ||
77 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, drop_last=True, | ||
73 | shuffle=True, pin_memory=True, collate_fn=self.collate_fn) | 78 | shuffle=True, pin_memory=True, collate_fn=self.collate_fn) |
74 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, | 79 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, drop_last=True, |
75 | pin_memory=True, collate_fn=self.collate_fn) | 80 | pin_memory=True, collate_fn=self.collate_fn) |
76 | 81 | ||
77 | def train_dataloader(self): | 82 | def train_dataloader(self): |
@@ -85,39 +90,23 @@ class CSVDataset(Dataset): | |||
85 | def __init__(self, | 90 | def __init__(self, |
86 | data, | 91 | data, |
87 | tokenizer, | 92 | tokenizer, |
88 | instance_prompt, | 93 | instance_identifier, |
89 | class_data_root=None, | 94 | class_identifier=None, |
90 | class_prompt=None, | ||
91 | size=512, | 95 | size=512, |
92 | repeats=1, | 96 | repeats=1, |
93 | interpolation="bicubic", | 97 | interpolation="bicubic", |
94 | identifier="*", | ||
95 | center_crop=False, | 98 | center_crop=False, |
96 | batch_size=1, | ||
97 | ): | 99 | ): |
98 | 100 | ||
99 | self.data = data | 101 | self.data = data |
100 | self.tokenizer = tokenizer | 102 | self.tokenizer = tokenizer |
101 | self.instance_prompt = instance_prompt | 103 | self.instance_identifier = instance_identifier |
102 | self.identifier = identifier | 104 | self.class_identifier = class_identifier |
103 | self.batch_size = batch_size | ||
104 | self.cache = {} | 105 | self.cache = {} |
105 | 106 | ||
106 | self.num_instance_images = len(self.data) | 107 | self.num_instance_images = len(self.data) |
107 | self._length = self.num_instance_images * repeats | 108 | self._length = self.num_instance_images * repeats |
108 | 109 | ||
109 | if class_data_root is not None: | ||
110 | self.class_data_root = Path(class_data_root) | ||
111 | self.class_data_root.mkdir(parents=True, exist_ok=True) | ||
112 | |||
113 | self.class_images = list(self.class_data_root.iterdir()) | ||
114 | self.num_class_images = len(self.class_images) | ||
115 | self._length = max(self.num_class_images, self.num_instance_images) | ||
116 | |||
117 | self.class_prompt = class_prompt | ||
118 | else: | ||
119 | self.class_data_root = None | ||
120 | |||
121 | self.interpolation = {"linear": transforms.InterpolationMode.NEAREST, | 110 | self.interpolation = {"linear": transforms.InterpolationMode.NEAREST, |
122 | "bilinear": transforms.InterpolationMode.BILINEAR, | 111 | "bilinear": transforms.InterpolationMode.BILINEAR, |
123 | "bicubic": transforms.InterpolationMode.BICUBIC, | 112 | "bicubic": transforms.InterpolationMode.BICUBIC, |
@@ -134,46 +123,49 @@ class CSVDataset(Dataset): | |||
134 | ) | 123 | ) |
135 | 124 | ||
136 | def __len__(self): | 125 | def __len__(self): |
137 | return math.ceil(self._length / self.batch_size) * self.batch_size | 126 | return self._length |
138 | 127 | ||
139 | def get_example(self, i): | 128 | def get_example(self, i): |
140 | image_path, prompt, nprompt = self.data[i % self.num_instance_images] | 129 | instance_image_path, class_image_path, prompt, nprompt = self.data[i % self.num_instance_images] |
141 | 130 | ||
142 | if image_path in self.cache: | 131 | if instance_image_path in self.cache: |
143 | return self.cache[image_path] | 132 | return self.cache[instance_image_path] |
144 | 133 | ||
145 | example = {} | 134 | example = {} |
146 | 135 | ||
147 | instance_image = Image.open(image_path) | 136 | example["prompts"] = prompt |
137 | example["nprompts"] = nprompt | ||
138 | |||
139 | instance_image = Image.open(instance_image_path) | ||
148 | if not instance_image.mode == "RGB": | 140 | if not instance_image.mode == "RGB": |
149 | instance_image = instance_image.convert("RGB") | 141 | instance_image = instance_image.convert("RGB") |
150 | 142 | ||
151 | prompt = prompt.format(self.identifier) | 143 | instance_prompt = prompt.format(self.instance_identifier) |
152 | 144 | ||
153 | example["prompts"] = prompt | ||
154 | example["nprompts"] = nprompt | ||
155 | example["instance_images"] = instance_image | 145 | example["instance_images"] = instance_image |
156 | example["instance_prompt_ids"] = self.tokenizer( | 146 | example["instance_prompt_ids"] = self.tokenizer( |
157 | self.instance_prompt, | 147 | instance_prompt, |
158 | padding="do_not_pad", | 148 | padding="do_not_pad", |
159 | truncation=True, | 149 | truncation=True, |
160 | max_length=self.tokenizer.model_max_length, | 150 | max_length=self.tokenizer.model_max_length, |
161 | ).input_ids | 151 | ).input_ids |
162 | 152 | ||
163 | if self.class_data_root: | 153 | if self.class_identifier: |
164 | class_image = Image.open(self.class_images[i % self.num_class_images]) | 154 | class_image = Image.open(class_image_path) |
165 | if not class_image.mode == "RGB": | 155 | if not class_image.mode == "RGB": |
166 | class_image = class_image.convert("RGB") | 156 | class_image = class_image.convert("RGB") |
167 | 157 | ||
158 | class_prompt = prompt.format(self.class_identifier) | ||
159 | |||
168 | example["class_images"] = class_image | 160 | example["class_images"] = class_image |
169 | example["class_prompt_ids"] = self.tokenizer( | 161 | example["class_prompt_ids"] = self.tokenizer( |
170 | self.class_prompt, | 162 | class_prompt, |
171 | padding="do_not_pad", | 163 | padding="do_not_pad", |
172 | truncation=True, | 164 | truncation=True, |
173 | max_length=self.tokenizer.model_max_length, | 165 | max_length=self.tokenizer.model_max_length, |
174 | ).input_ids | 166 | ).input_ids |
175 | 167 | ||
176 | self.cache[image_path] = example | 168 | self.cache[instance_image_path] = example |
177 | return example | 169 | return example |
178 | 170 | ||
179 | def __getitem__(self, i): | 171 | def __getitem__(self, i): |
@@ -185,7 +177,7 @@ class CSVDataset(Dataset): | |||
185 | example["instance_images"] = self.image_transforms(unprocessed_example["instance_images"]) | 177 | example["instance_images"] = self.image_transforms(unprocessed_example["instance_images"]) |
186 | example["instance_prompt_ids"] = unprocessed_example["instance_prompt_ids"] | 178 | example["instance_prompt_ids"] = unprocessed_example["instance_prompt_ids"] |
187 | 179 | ||
188 | if self.class_data_root: | 180 | if self.class_identifier: |
189 | example["class_images"] = self.image_transforms(unprocessed_example["class_images"]) | 181 | example["class_images"] = self.image_transforms(unprocessed_example["class_images"]) |
190 | example["class_prompt_ids"] = unprocessed_example["class_prompt_ids"] | 182 | example["class_prompt_ids"] = unprocessed_example["class_prompt_ids"] |
191 | 183 | ||
diff --git a/data/dreambooth/prompt.py b/data/dreambooth/prompt.py index 34f510d..b3a83ce 100644 --- a/data/dreambooth/prompt.py +++ b/data/dreambooth/prompt.py | |||
@@ -2,8 +2,9 @@ from torch.utils.data import Dataset | |||
2 | 2 | ||
3 | 3 | ||
4 | class PromptDataset(Dataset): | 4 | class PromptDataset(Dataset): |
5 | def __init__(self, prompt, num_samples): | 5 | def __init__(self, prompt, nprompt, num_samples): |
6 | self.prompt = prompt | 6 | self.prompt = prompt |
7 | self.nprompt = nprompt | ||
7 | self.num_samples = num_samples | 8 | self.num_samples = num_samples |
8 | 9 | ||
9 | def __len__(self): | 10 | def __len__(self): |
@@ -12,5 +13,6 @@ class PromptDataset(Dataset): | |||
12 | def __getitem__(self, index): | 13 | def __getitem__(self, index): |
13 | example = {} | 14 | example = {} |
14 | example["prompt"] = self.prompt | 15 | example["prompt"] = self.prompt |
16 | example["nprompt"] = self.nprompt | ||
15 | example["index"] = index | 17 | example["index"] = index |
16 | return example | 18 | return example |
diff --git a/data/textual_inversion/csv.py b/data/textual_inversion/csv.py index 852b1cb..4c5e27e 100644 --- a/data/textual_inversion/csv.py +++ b/data/textual_inversion/csv.py | |||
@@ -52,13 +52,14 @@ class CSVDataModule(pl.LightningDataModule): | |||
52 | valid_set_size = int(len(self.data_full) * 0.2) | 52 | valid_set_size = int(len(self.data_full) * 0.2) |
53 | if self.valid_set_size: | 53 | if self.valid_set_size: |
54 | valid_set_size = min(valid_set_size, self.valid_set_size) | 54 | valid_set_size = min(valid_set_size, self.valid_set_size) |
55 | valid_set_size = max(valid_set_size, 1) | ||
55 | train_set_size = len(self.data_full) - valid_set_size | 56 | train_set_size = len(self.data_full) - valid_set_size |
56 | 57 | ||
57 | self.data_train, self.data_val = random_split(self.data_full, [train_set_size, valid_set_size], self.generator) | 58 | self.data_train, self.data_val = random_split(self.data_full, [train_set_size, valid_set_size], self.generator) |
58 | 59 | ||
59 | train_dataset = CSVDataset(self.data_train, self.tokenizer, size=self.size, repeats=self.repeats, interpolation=self.interpolation, | 60 | train_dataset = CSVDataset(self.data_train, self.tokenizer, size=self.size, repeats=self.repeats, interpolation=self.interpolation, |
60 | placeholder_token=self.placeholder_token, center_crop=self.center_crop) | 61 | placeholder_token=self.placeholder_token, center_crop=self.center_crop) |
61 | val_dataset = CSVDataset(self.data_val, self.tokenizer, size=self.size, interpolation=self.interpolation, | 62 | val_dataset = CSVDataset(self.data_val, self.tokenizer, size=self.size, repeats=self.repeats, interpolation=self.interpolation, |
62 | placeholder_token=self.placeholder_token, center_crop=self.center_crop) | 63 | placeholder_token=self.placeholder_token, center_crop=self.center_crop) |
63 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, pin_memory=True, shuffle=True) | 64 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, pin_memory=True, shuffle=True) |
64 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, pin_memory=True) | 65 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, pin_memory=True) |
diff --git a/dreambooth.py b/dreambooth.py index 9d6b8d6..2fe89ec 100644 --- a/dreambooth.py +++ b/dreambooth.py | |||
@@ -13,13 +13,12 @@ import torch.utils.checkpoint | |||
13 | from accelerate import Accelerator | 13 | from accelerate import Accelerator |
14 | from accelerate.logging import get_logger | 14 | from accelerate.logging import get_logger |
15 | from accelerate.utils import LoggerType, set_seed | 15 | from accelerate.utils import LoggerType, set_seed |
16 | from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel | 16 | from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, UNet2DConditionModel |
17 | from schedulers.scheduling_euler_a import EulerAScheduler | 17 | from schedulers.scheduling_euler_a import EulerAScheduler |
18 | from diffusers.optimization import get_scheduler | 18 | from diffusers.optimization import get_scheduler |
19 | from pipelines.stable_diffusion.no_check import NoCheck | ||
20 | from PIL import Image | 19 | from PIL import Image |
21 | from tqdm.auto import tqdm | 20 | from tqdm.auto import tqdm |
22 | from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer | 21 | from transformers import CLIPTextModel, CLIPTokenizer |
23 | from slugify import slugify | 22 | from slugify import slugify |
24 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 23 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
25 | import json | 24 | import json |
@@ -56,7 +55,13 @@ def parse_args(): | |||
56 | help="A folder containing the training data." | 55 | help="A folder containing the training data." |
57 | ) | 56 | ) |
58 | parser.add_argument( | 57 | parser.add_argument( |
59 | "--identifier", | 58 | "--instance_identifier", |
59 | type=str, | ||
60 | default=None, | ||
61 | help="A token to use as a placeholder for the concept.", | ||
62 | ) | ||
63 | parser.add_argument( | ||
64 | "--class_identifier", | ||
60 | type=str, | 65 | type=str, |
61 | default=None, | 66 | default=None, |
62 | help="A token to use as a placeholder for the concept.", | 67 | help="A token to use as a placeholder for the concept.", |
@@ -218,12 +223,6 @@ def parse_args(): | |||
218 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | 223 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", |
219 | ) | 224 | ) |
220 | parser.add_argument( | 225 | parser.add_argument( |
221 | "--instance_prompt", | ||
222 | type=str, | ||
223 | default=None, | ||
224 | help="The prompt with identifier specifing the instance", | ||
225 | ) | ||
226 | parser.add_argument( | ||
227 | "--class_data_dir", | 226 | "--class_data_dir", |
228 | type=str, | 227 | type=str, |
229 | default=None, | 228 | default=None, |
@@ -231,12 +230,6 @@ def parse_args(): | |||
231 | help="A folder containing the training data of class images.", | 230 | help="A folder containing the training data of class images.", |
232 | ) | 231 | ) |
233 | parser.add_argument( | 232 | parser.add_argument( |
234 | "--class_prompt", | ||
235 | type=str, | ||
236 | default=None, | ||
237 | help="The prompt to specify images in the same class as provided intance images.", | ||
238 | ) | ||
239 | parser.add_argument( | ||
240 | "--prior_loss_weight", | 233 | "--prior_loss_weight", |
241 | type=float, | 234 | type=float, |
242 | default=1.0, | 235 | default=1.0, |
@@ -255,15 +248,6 @@ def parse_args(): | |||
255 | help="Max gradient norm." | 248 | help="Max gradient norm." |
256 | ) | 249 | ) |
257 | parser.add_argument( | 250 | parser.add_argument( |
258 | "--num_class_images", | ||
259 | type=int, | ||
260 | default=100, | ||
261 | help=( | ||
262 | "Minimal class images for prior perversation loss. If not have enough images, additional images will be" | ||
263 | " sampled with class_prompt." | ||
264 | ), | ||
265 | ) | ||
266 | parser.add_argument( | ||
267 | "--config", | 251 | "--config", |
268 | type=str, | 252 | type=str, |
269 | default=None, | 253 | default=None, |
@@ -286,21 +270,12 @@ def parse_args(): | |||
286 | if args.pretrained_model_name_or_path is None: | 270 | if args.pretrained_model_name_or_path is None: |
287 | raise ValueError("You must specify --pretrained_model_name_or_path") | 271 | raise ValueError("You must specify --pretrained_model_name_or_path") |
288 | 272 | ||
289 | if args.instance_prompt is None: | 273 | if args.instance_identifier is None: |
290 | raise ValueError("You must specify --instance_prompt") | 274 | raise ValueError("You must specify --instance_identifier") |
291 | |||
292 | if args.identifier is None: | ||
293 | raise ValueError("You must specify --identifier") | ||
294 | 275 | ||
295 | if args.output_dir is None: | 276 | if args.output_dir is None: |
296 | raise ValueError("You must specify --output_dir") | 277 | raise ValueError("You must specify --output_dir") |
297 | 278 | ||
298 | if args.with_prior_preservation: | ||
299 | if args.class_data_dir is None: | ||
300 | raise ValueError("You must specify --class_data_dir") | ||
301 | if args.class_prompt is None: | ||
302 | raise ValueError("You must specify --class_prompt") | ||
303 | |||
304 | return args | 279 | return args |
305 | 280 | ||
306 | 281 | ||
@@ -443,7 +418,7 @@ def main(): | |||
443 | args = parse_args() | 418 | args = parse_args() |
444 | 419 | ||
445 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | 420 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") |
446 | basepath = Path(args.output_dir).joinpath(slugify(args.identifier), now) | 421 | basepath = Path(args.output_dir).joinpath(slugify(args.instance_identifier), now) |
447 | basepath.mkdir(parents=True, exist_ok=True) | 422 | basepath.mkdir(parents=True, exist_ok=True) |
448 | 423 | ||
449 | accelerator = Accelerator( | 424 | accelerator = Accelerator( |
@@ -488,47 +463,6 @@ def main(): | |||
488 | freeze_params(vae.parameters()) | 463 | freeze_params(vae.parameters()) |
489 | freeze_params(text_encoder.parameters()) | 464 | freeze_params(text_encoder.parameters()) |
490 | 465 | ||
491 | # Generate class images, if necessary | ||
492 | if args.with_prior_preservation: | ||
493 | class_images_dir = Path(args.class_data_dir) | ||
494 | class_images_dir.mkdir(parents=True, exist_ok=True) | ||
495 | cur_class_images = len(list(class_images_dir.iterdir())) | ||
496 | |||
497 | if cur_class_images < args.num_class_images: | ||
498 | scheduler = EulerAScheduler( | ||
499 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
500 | ) | ||
501 | |||
502 | pipeline = VlpnStableDiffusion( | ||
503 | text_encoder=text_encoder, | ||
504 | vae=vae, | ||
505 | unet=unet, | ||
506 | tokenizer=tokenizer, | ||
507 | scheduler=scheduler, | ||
508 | ).to(accelerator.device) | ||
509 | pipeline.enable_attention_slicing() | ||
510 | pipeline.set_progress_bar_config(disable=True) | ||
511 | |||
512 | num_new_images = args.num_class_images - cur_class_images | ||
513 | logger.info(f"Number of class images to sample: {num_new_images}.") | ||
514 | |||
515 | sample_dataset = PromptDataset(args.class_prompt, num_new_images) | ||
516 | sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) | ||
517 | |||
518 | sample_dataloader = accelerator.prepare(sample_dataloader) | ||
519 | |||
520 | for example in tqdm(sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process): | ||
521 | with accelerator.autocast(): | ||
522 | images = pipeline(example["prompt"]).images | ||
523 | |||
524 | for i, image in enumerate(images): | ||
525 | image.save(class_images_dir / f"{example['index'][i] + cur_class_images}.jpg") | ||
526 | |||
527 | del pipeline | ||
528 | |||
529 | if torch.cuda.is_available(): | ||
530 | torch.cuda.empty_cache() | ||
531 | |||
532 | if args.scale_lr: | 466 | if args.scale_lr: |
533 | args.learning_rate = ( | 467 | args.learning_rate = ( |
534 | args.learning_rate * args.gradient_accumulation_steps * | 468 | args.learning_rate * args.gradient_accumulation_steps * |
@@ -564,6 +498,7 @@ def main(): | |||
564 | 498 | ||
565 | def collate_fn(examples): | 499 | def collate_fn(examples): |
566 | prompts = [example["prompts"] for example in examples] | 500 | prompts = [example["prompts"] for example in examples] |
501 | nprompts = [example["nprompts"] for example in examples] | ||
567 | input_ids = [example["instance_prompt_ids"] for example in examples] | 502 | input_ids = [example["instance_prompt_ids"] for example in examples] |
568 | pixel_values = [example["instance_images"] for example in examples] | 503 | pixel_values = [example["instance_images"] for example in examples] |
569 | 504 | ||
@@ -579,6 +514,7 @@ def main(): | |||
579 | 514 | ||
580 | batch = { | 515 | batch = { |
581 | "prompts": prompts, | 516 | "prompts": prompts, |
517 | "nprompts": nprompts, | ||
582 | "input_ids": input_ids, | 518 | "input_ids": input_ids, |
583 | "pixel_values": pixel_values, | 519 | "pixel_values": pixel_values, |
584 | } | 520 | } |
@@ -588,11 +524,9 @@ def main(): | |||
588 | data_file=args.train_data_file, | 524 | data_file=args.train_data_file, |
589 | batch_size=args.train_batch_size, | 525 | batch_size=args.train_batch_size, |
590 | tokenizer=tokenizer, | 526 | tokenizer=tokenizer, |
591 | instance_prompt=args.instance_prompt, | 527 | instance_identifier=args.instance_identifier, |
592 | class_data_root=args.class_data_dir if args.with_prior_preservation else None, | 528 | class_identifier=args.class_identifier, |
593 | class_prompt=args.class_prompt, | ||
594 | size=args.resolution, | 529 | size=args.resolution, |
595 | identifier=args.identifier, | ||
596 | repeats=args.repeats, | 530 | repeats=args.repeats, |
597 | center_crop=args.center_crop, | 531 | center_crop=args.center_crop, |
598 | valid_set_size=args.sample_batch_size*args.sample_batches, | 532 | valid_set_size=args.sample_batch_size*args.sample_batches, |
@@ -601,6 +535,46 @@ def main(): | |||
601 | datamodule.prepare_data() | 535 | datamodule.prepare_data() |
602 | datamodule.setup() | 536 | datamodule.setup() |
603 | 537 | ||
538 | if args.class_identifier: | ||
539 | missing_data = [item for item in datamodule.data if not item[1].exists()] | ||
540 | |||
541 | if len(missing_data) != 0: | ||
542 | batched_data = [missing_data[i:i+args.sample_batch_size] | ||
543 | for i in range(0, len(missing_data), args.sample_batch_size)] | ||
544 | |||
545 | scheduler = EulerAScheduler( | ||
546 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
547 | ) | ||
548 | |||
549 | pipeline = VlpnStableDiffusion( | ||
550 | text_encoder=text_encoder, | ||
551 | vae=vae, | ||
552 | unet=unet, | ||
553 | tokenizer=tokenizer, | ||
554 | scheduler=scheduler, | ||
555 | ).to(accelerator.device) | ||
556 | pipeline.enable_attention_slicing() | ||
557 | |||
558 | for batch in batched_data: | ||
559 | image_name = [p[1] for p in batch] | ||
560 | prompt = [p[2] for p in batch] | ||
561 | nprompt = [p[3] for p in batch] | ||
562 | |||
563 | with accelerator.autocast(): | ||
564 | images = pipeline( | ||
565 | prompt=prompt, | ||
566 | negative_prompt=nprompt, | ||
567 | num_inference_steps=args.sample_steps | ||
568 | ).images | ||
569 | |||
570 | for i, image in enumerate(images): | ||
571 | image.save(image_name[i]) | ||
572 | |||
573 | del pipeline | ||
574 | |||
575 | if torch.cuda.is_available(): | ||
576 | torch.cuda.empty_cache() | ||
577 | |||
604 | train_dataloader = datamodule.train_dataloader() | 578 | train_dataloader = datamodule.train_dataloader() |
605 | val_dataloader = datamodule.val_dataloader() | 579 | val_dataloader = datamodule.val_dataloader() |
606 | 580 | ||
@@ -718,23 +692,22 @@ def main(): | |||
718 | # Predict the noise residual | 692 | # Predict the noise residual |
719 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | 693 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
720 | 694 | ||
721 | with accelerator.autocast(): | 695 | if args.with_prior_preservation: |
722 | if args.with_prior_preservation: | 696 | # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. |
723 | # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. | 697 | noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) |
724 | noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) | 698 | noise, noise_prior = torch.chunk(noise, 2, dim=0) |
725 | noise, noise_prior = torch.chunk(noise, 2, dim=0) | ||
726 | 699 | ||
727 | # Compute instance loss | 700 | # Compute instance loss |
728 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | 701 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() |
729 | 702 | ||
730 | # Compute prior loss | 703 | # Compute prior loss |
731 | prior_loss = F.mse_loss(noise_pred_prior, noise_prior, | 704 | prior_loss = F.mse_loss(noise_pred_prior, noise_prior, |
732 | reduction="none").mean([1, 2, 3]).mean() | 705 | reduction="none").mean([1, 2, 3]).mean() |
733 | 706 | ||
734 | # Add the prior loss to the instance loss. | 707 | # Add the prior loss to the instance loss. |
735 | loss = loss + args.prior_loss_weight * prior_loss | 708 | loss = loss + args.prior_loss_weight * prior_loss |
736 | else: | 709 | else: |
737 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | 710 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() |
738 | 711 | ||
739 | accelerator.backward(loss) | 712 | accelerator.backward(loss) |
740 | if accelerator.sync_gradients: | 713 | if accelerator.sync_gradients: |
@@ -786,8 +759,7 @@ def main(): | |||
786 | 759 | ||
787 | noise_pred, noise = accelerator.gather_for_metrics((noise_pred, noise)) | 760 | noise_pred, noise = accelerator.gather_for_metrics((noise_pred, noise)) |
788 | 761 | ||
789 | with accelerator.autocast(): | 762 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() |
790 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
791 | 763 | ||
792 | loss = loss.detach().item() | 764 | loss = loss.detach().item() |
793 | val_loss += loss | 765 | val_loss += loss |
diff --git a/textual_inversion.py b/textual_inversion.py index 5fc2338..4c4da29 100644 --- a/textual_inversion.py +++ b/textual_inversion.py | |||
@@ -694,8 +694,7 @@ def main(): | |||
694 | # Predict the noise residual | 694 | # Predict the noise residual |
695 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | 695 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
696 | 696 | ||
697 | with accelerator.autocast(): | 697 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() |
698 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
699 | 698 | ||
700 | accelerator.backward(loss) | 699 | accelerator.backward(loss) |
701 | 700 | ||
@@ -766,8 +765,7 @@ def main(): | |||
766 | 765 | ||
767 | noise_pred, noise = accelerator.gather_for_metrics((noise_pred, noise)) | 766 | noise_pred, noise = accelerator.gather_for_metrics((noise_pred, noise)) |
768 | 767 | ||
769 | with accelerator.autocast(): | 768 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() |
770 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
771 | 769 | ||
772 | loss = loss.detach().item() | 770 | loss = loss.detach().item() |
773 | val_loss += loss | 771 | val_loss += loss |