diff options
author | Volpeon <git@volpeon.ink> | 2023-04-01 16:30:36 +0200 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2023-04-01 16:30:36 +0200 |
commit | c96073646bbb638d7d78fdd7d9fdeed08d1454b5 (patch) | |
tree | 3e0846964fa127844d652e2dee081cd67e672e6a | |
parent | Update (diff) | |
download | textual-inversion-diff-c96073646bbb638d7d78fdd7d9fdeed08d1454b5.tar.gz textual-inversion-diff-c96073646bbb638d7d78fdd7d9fdeed08d1454b5.tar.bz2 textual-inversion-diff-c96073646bbb638d7d78fdd7d9fdeed08d1454b5.zip |
Experimental: TI via LoRA
-rw-r--r-- | models/clip/embeddings.py | 53 | ||||
-rw-r--r-- | train_ti.py | 24 | ||||
-rw-r--r-- | training/strategy/ti.py | 30 |
3 files changed, 44 insertions, 63 deletions
diff --git a/models/clip/embeddings.py b/models/clip/embeddings.py index 9abd1bb..88e0cc0 100644 --- a/models/clip/embeddings.py +++ b/models/clip/embeddings.py | |||
@@ -31,25 +31,47 @@ def resize_embedding(old_embedding: nn.Embedding, new_num_embeddings: int, initi | |||
31 | return new_embedding | 31 | return new_embedding |
32 | 32 | ||
33 | 33 | ||
34 | class OverlayLinear(nn.Module): | ||
35 | def __init__(self, in_features, out_features, rank=4): | ||
36 | super().__init__() | ||
37 | |||
38 | if rank > min(in_features, out_features): | ||
39 | raise ValueError(f"Rank {rank} must be less or equal than {min(in_features, out_features)}") | ||
40 | |||
41 | self.rank = rank | ||
42 | self.down = nn.Linear(in_features, rank, bias=False) | ||
43 | self.up = nn.Linear(rank, out_features, bias=False) | ||
44 | self.reset() | ||
45 | |||
46 | def reset(self): | ||
47 | nn.init.normal_(self.down.weight, std=1 / self.rank) | ||
48 | nn.init.zeros_(self.up.weight) | ||
49 | |||
50 | def forward(self, hidden_states): | ||
51 | orig_dtype = hidden_states.dtype | ||
52 | dtype = self.down.weight.dtype | ||
53 | |||
54 | down_hidden_states = self.down(hidden_states.to(dtype)) | ||
55 | up_hidden_states = self.up(down_hidden_states) | ||
56 | |||
57 | return up_hidden_states.to(orig_dtype) | ||
58 | |||
59 | |||
34 | class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | 60 | class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): |
35 | def __init__(self, config: CLIPTextConfig, embeddings: CLIPTextEmbeddings): | 61 | def __init__(self, config: CLIPTextConfig, embeddings: CLIPTextEmbeddings, rank: int = 128): |
36 | super().__init__(config) | 62 | super().__init__(config) |
37 | 63 | ||
38 | self.token_embedding = embeddings.token_embedding | 64 | self.token_embedding = embeddings.token_embedding |
39 | self.position_embedding = embeddings.position_embedding | 65 | self.position_embedding = embeddings.position_embedding |
40 | self.initializer_factor = config.initializer_factor | 66 | self.initializer_factor = config.initializer_factor |
41 | 67 | ||
42 | self.temp_token_embedding = nn.Embedding( | 68 | self.overlay = OverlayLinear(self.token_embedding.embedding_dim, self.token_embedding.embedding_dim, rank) |
43 | self.token_embedding.num_embeddings, | ||
44 | self.token_embedding.embedding_dim, | ||
45 | device=self.token_embedding.weight.device, | ||
46 | dtype=self.token_embedding.weight.dtype | ||
47 | ) | ||
48 | self.temp_token_embedding.weight.data = self.token_embedding.weight.data.clone().detach() | ||
49 | self.temp_token_ids = torch.tensor([], dtype=torch.long) | 69 | self.temp_token_ids = torch.tensor([], dtype=torch.long) |
50 | 70 | ||
71 | def reset_overlay(self): | ||
72 | self.overlay.reset() | ||
73 | |||
51 | def resize(self, size: int): | 74 | def resize(self, size: int): |
52 | self.temp_token_embedding = resize_embedding(self.temp_token_embedding, size, self.initializer_factor) | ||
53 | self.token_embedding = resize_embedding(self.token_embedding, size, self.initializer_factor) | 75 | self.token_embedding = resize_embedding(self.token_embedding, size, self.initializer_factor) |
54 | 76 | ||
55 | def add_embed( | 77 | def add_embed( |
@@ -74,8 +96,8 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
74 | initializer = self.get_embed(initializer) | 96 | initializer = self.get_embed(initializer) |
75 | 97 | ||
76 | initializer = initializer.to( | 98 | initializer = initializer.to( |
77 | device=self.temp_token_embedding.weight.device, | 99 | device=self.token_embedding.weight.device, |
78 | dtype=self.temp_token_embedding.weight.dtype, | 100 | dtype=self.token_embedding.weight.dtype, |
79 | ) | 101 | ) |
80 | 102 | ||
81 | if initializer_noise != 0: | 103 | if initializer_noise != 0: |
@@ -84,7 +106,6 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
84 | token_ids = torch.tensor(token_ids, dtype=torch.long) | 106 | token_ids = torch.tensor(token_ids, dtype=torch.long) |
85 | 107 | ||
86 | self.temp_token_ids = torch.cat([self.temp_token_ids, token_ids]) | 108 | self.temp_token_ids = torch.cat([self.temp_token_ids, token_ids]) |
87 | self.temp_token_embedding.weight.data[token_ids] = initializer | ||
88 | self.token_embedding.weight.data[token_ids] = initializer | 109 | self.token_embedding.weight.data[token_ids] = initializer |
89 | 110 | ||
90 | def load_embed(self, input_ids: list[int], filename: Path): | 111 | def load_embed(self, input_ids: list[int], filename: Path): |
@@ -95,7 +116,10 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
95 | save_file({"embed": self.get_embed(input_ids)}, filename) | 116 | save_file({"embed": self.get_embed(input_ids)}, filename) |
96 | 117 | ||
97 | def persist(self): | 118 | def persist(self): |
98 | self.token_embedding.weight.data[self.temp_token_ids] = self.temp_token_embedding.weight.data[self.temp_token_ids] | 119 | self.token_embedding.weight.data[self.temp_token_ids] += self.overlay( |
120 | self.token_embedding.weight.data[self.temp_token_ids] | ||
121 | ) | ||
122 | self.overlay.reset() | ||
99 | self.temp_token_ids = torch.tensor([], dtype=torch.long) | 123 | self.temp_token_ids = torch.tensor([], dtype=torch.long) |
100 | 124 | ||
101 | def get_embed(self, input_ids: Union[list[int], torch.LongTensor]): | 125 | def get_embed(self, input_ids: Union[list[int], torch.LongTensor]): |
@@ -103,9 +127,8 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
103 | input_ids = torch.tensor(input_ids, device=self.token_embedding.weight.device, dtype=torch.long) | 127 | input_ids = torch.tensor(input_ids, device=self.token_embedding.weight.device, dtype=torch.long) |
104 | 128 | ||
105 | embeds = self.token_embedding(input_ids) | 129 | embeds = self.token_embedding(input_ids) |
106 | |||
107 | mask = torch.isin(input_ids, self.temp_token_ids.to(input_ids.device)) | 130 | mask = torch.isin(input_ids, self.temp_token_ids.to(input_ids.device)) |
108 | embeds[mask] = self.temp_token_embedding(input_ids)[mask] | 131 | embeds[mask] += self.overlay(embeds[mask]) |
109 | 132 | ||
110 | return embeds | 133 | return embeds |
111 | 134 | ||
diff --git a/train_ti.py b/train_ti.py index 5482326..0ce0056 100644 --- a/train_ti.py +++ b/train_ti.py | |||
@@ -353,7 +353,7 @@ def parse_args(): | |||
353 | parser.add_argument( | 353 | parser.add_argument( |
354 | "--adam_weight_decay", | 354 | "--adam_weight_decay", |
355 | type=float, | 355 | type=float, |
356 | default=0, | 356 | default=1e-2, |
357 | help="Weight decay to use." | 357 | help="Weight decay to use." |
358 | ) | 358 | ) |
359 | parser.add_argument( | 359 | parser.add_argument( |
@@ -451,23 +451,6 @@ def parse_args(): | |||
451 | help="The weight of prior preservation loss." | 451 | help="The weight of prior preservation loss." |
452 | ) | 452 | ) |
453 | parser.add_argument( | 453 | parser.add_argument( |
454 | "--use_emb_decay", | ||
455 | action="store_true", | ||
456 | help="Whether to use embedding decay." | ||
457 | ) | ||
458 | parser.add_argument( | ||
459 | "--emb_decay_target", | ||
460 | default=0.4, | ||
461 | type=float, | ||
462 | help="Embedding decay target." | ||
463 | ) | ||
464 | parser.add_argument( | ||
465 | "--emb_decay", | ||
466 | default=1e2, | ||
467 | type=float, | ||
468 | help="Embedding decay factor." | ||
469 | ) | ||
470 | parser.add_argument( | ||
471 | "--noise_timesteps", | 454 | "--noise_timesteps", |
472 | type=int, | 455 | type=int, |
473 | default=1000, | 456 | default=1000, |
@@ -732,9 +715,6 @@ def main(): | |||
732 | sample_scheduler=sample_scheduler, | 715 | sample_scheduler=sample_scheduler, |
733 | checkpoint_output_dir=checkpoint_output_dir, | 716 | checkpoint_output_dir=checkpoint_output_dir, |
734 | gradient_checkpointing=args.gradient_checkpointing, | 717 | gradient_checkpointing=args.gradient_checkpointing, |
735 | use_emb_decay=args.use_emb_decay, | ||
736 | emb_decay_target=args.emb_decay_target, | ||
737 | emb_decay=args.emb_decay, | ||
738 | use_ema=args.use_ema, | 718 | use_ema=args.use_ema, |
739 | ema_inv_gamma=args.ema_inv_gamma, | 719 | ema_inv_gamma=args.ema_inv_gamma, |
740 | ema_power=args.ema_power, | 720 | ema_power=args.ema_power, |
@@ -800,7 +780,7 @@ def main(): | |||
800 | sample_frequency = math.ceil(num_train_epochs * (sample_frequency / args.num_train_steps)) | 780 | sample_frequency = math.ceil(num_train_epochs * (sample_frequency / args.num_train_steps)) |
801 | 781 | ||
802 | optimizer = create_optimizer( | 782 | optimizer = create_optimizer( |
803 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | 783 | text_encoder.text_model.embeddings.overlay.parameters(), |
804 | lr=args.learning_rate, | 784 | lr=args.learning_rate, |
805 | ) | 785 | ) |
806 | 786 | ||
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index b9a5547..19b8d25 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
@@ -32,9 +32,6 @@ def textual_inversion_strategy_callbacks( | |||
32 | placeholder_tokens: list[str], | 32 | placeholder_tokens: list[str], |
33 | placeholder_token_ids: list[list[int]], | 33 | placeholder_token_ids: list[list[int]], |
34 | gradient_checkpointing: bool = False, | 34 | gradient_checkpointing: bool = False, |
35 | use_emb_decay: bool = False, | ||
36 | emb_decay_target: float = 0.4, | ||
37 | emb_decay: float = 1e-2, | ||
38 | use_ema: bool = False, | 35 | use_ema: bool = False, |
39 | ema_inv_gamma: float = 1.0, | 36 | ema_inv_gamma: float = 1.0, |
40 | ema_power: int = 1, | 37 | ema_power: int = 1, |
@@ -73,7 +70,7 @@ def textual_inversion_strategy_callbacks( | |||
73 | 70 | ||
74 | if use_ema: | 71 | if use_ema: |
75 | ema_embeddings = EMAModel( | 72 | ema_embeddings = EMAModel( |
76 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | 73 | text_encoder.text_model.embeddings.overlay.parameters(), |
77 | inv_gamma=ema_inv_gamma, | 74 | inv_gamma=ema_inv_gamma, |
78 | power=ema_power, | 75 | power=ema_power, |
79 | max_value=ema_max_decay, | 76 | max_value=ema_max_decay, |
@@ -85,13 +82,13 @@ def textual_inversion_strategy_callbacks( | |||
85 | def ema_context(): | 82 | def ema_context(): |
86 | if ema_embeddings is not None: | 83 | if ema_embeddings is not None: |
87 | return ema_embeddings.apply_temporary( | 84 | return ema_embeddings.apply_temporary( |
88 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | 85 | text_encoder.text_model.embeddings.overlay.parameters() |
89 | ) | 86 | ) |
90 | else: | 87 | else: |
91 | return nullcontext() | 88 | return nullcontext() |
92 | 89 | ||
93 | def on_accum_model(): | 90 | def on_accum_model(): |
94 | return text_encoder.text_model.embeddings.temp_token_embedding | 91 | return text_encoder.text_model.embeddings.overlay |
95 | 92 | ||
96 | @contextmanager | 93 | @contextmanager |
97 | def on_train(epoch: int): | 94 | def on_train(epoch: int): |
@@ -106,27 +103,9 @@ def textual_inversion_strategy_callbacks( | |||
106 | yield | 103 | yield |
107 | 104 | ||
108 | @torch.no_grad() | 105 | @torch.no_grad() |
109 | def on_before_optimize(lr: float, epoch: int): | ||
110 | if use_emb_decay: | ||
111 | w = text_encoder.text_model.embeddings.temp_token_embedding.weight | ||
112 | return torch.all(w.grad == 0, dim=1) | ||
113 | |||
114 | @torch.no_grad() | ||
115 | def on_after_optimize(zero_ids, lr: float): | 106 | def on_after_optimize(zero_ids, lr: float): |
116 | if ema_embeddings is not None: | 107 | if ema_embeddings is not None: |
117 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | 108 | ema_embeddings.step(text_encoder.text_model.embeddings.overlay.parameters()) |
118 | |||
119 | if use_emb_decay: | ||
120 | lambda_ = emb_decay * lr | ||
121 | |||
122 | if lambda_ != 0: | ||
123 | w = text_encoder.text_model.embeddings.temp_token_embedding.weight | ||
124 | |||
125 | mask = torch.ones(w.shape[0], dtype=torch.bool) | ||
126 | mask[zero_ids] = False | ||
127 | |||
128 | norm = w[mask, :].norm(dim=-1, keepdim=True) | ||
129 | w[mask].add_((w[mask] / norm.clamp_min(1e-12)) * lambda_ * (emb_decay_target - norm)) | ||
130 | 109 | ||
131 | def on_log(): | 110 | def on_log(): |
132 | if ema_embeddings is not None: | 111 | if ema_embeddings is not None: |
@@ -171,7 +150,6 @@ def textual_inversion_strategy_callbacks( | |||
171 | on_accum_model=on_accum_model, | 150 | on_accum_model=on_accum_model, |
172 | on_train=on_train, | 151 | on_train=on_train, |
173 | on_eval=on_eval, | 152 | on_eval=on_eval, |
174 | on_before_optimize=on_before_optimize, | ||
175 | on_after_optimize=on_after_optimize, | 153 | on_after_optimize=on_after_optimize, |
176 | on_log=on_log, | 154 | on_log=on_log, |
177 | on_checkpoint=on_checkpoint, | 155 | on_checkpoint=on_checkpoint, |