diff options
author | Volpeon <git@volpeon.ink> | 2023-04-10 13:42:50 +0200 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2023-04-10 13:42:50 +0200 |
commit | cda7eba710dfde7b2e67964bcf76cd410c6a4a63 (patch) | |
tree | 7fa63edba444d4c8f05e8ef8bc66ca32fbb86bbc | |
parent | Fix sample gen: models sometimes weren't in eval mode (diff) | |
download | textual-inversion-diff-cda7eba710dfde7b2e67964bcf76cd410c6a4a63.tar.gz textual-inversion-diff-cda7eba710dfde7b2e67964bcf76cd410c6a4a63.tar.bz2 textual-inversion-diff-cda7eba710dfde7b2e67964bcf76cd410c6a4a63.zip |
Update
-rw-r--r-- | training/functional.py | 51 | ||||
-rw-r--r-- | training/strategy/dreambooth.py | 2 | ||||
-rw-r--r-- | training/strategy/lora.py | 2 | ||||
-rw-r--r-- | training/strategy/ti.py | 2 |
4 files changed, 30 insertions, 27 deletions
diff --git a/training/functional.py b/training/functional.py index ff6d3a9..4220c79 100644 --- a/training/functional.py +++ b/training/functional.py | |||
@@ -143,28 +143,29 @@ def save_samples( | |||
143 | for prompt in batch["nprompt_ids"] | 143 | for prompt in batch["nprompt_ids"] |
144 | ] | 144 | ] |
145 | 145 | ||
146 | for i in range(num_batches): | 146 | with torch.inference_mode(): |
147 | start = i * batch_size | 147 | for i in range(num_batches): |
148 | end = (i + 1) * batch_size | 148 | start = i * batch_size |
149 | prompt = prompt_ids[start:end] | 149 | end = (i + 1) * batch_size |
150 | nprompt = nprompt_ids[start:end] | 150 | prompt = prompt_ids[start:end] |
151 | 151 | nprompt = nprompt_ids[start:end] | |
152 | samples = pipeline( | 152 | |
153 | prompt=prompt, | 153 | samples = pipeline( |
154 | negative_prompt=nprompt, | 154 | prompt=prompt, |
155 | height=image_size, | 155 | negative_prompt=nprompt, |
156 | width=image_size, | 156 | height=image_size, |
157 | generator=gen, | 157 | width=image_size, |
158 | guidance_scale=guidance_scale, | 158 | generator=gen, |
159 | sag_scale=0, | 159 | guidance_scale=guidance_scale, |
160 | num_inference_steps=num_steps, | 160 | sag_scale=0, |
161 | output_type='pil' | 161 | num_inference_steps=num_steps, |
162 | ).images | 162 | output_type='pil' |
163 | 163 | ).images | |
164 | all_samples += samples | 164 | |
165 | 165 | all_samples += samples | |
166 | image_grid = make_grid(all_samples, grid_rows, grid_cols) | 166 | |
167 | image_grid.save(file_path, quality=85) | 167 | image_grid = make_grid(all_samples, grid_rows, grid_cols) |
168 | image_grid.save(file_path, quality=85) | ||
168 | 169 | ||
169 | del generator | 170 | del generator |
170 | del pipeline | 171 | del pipeline |
@@ -482,7 +483,8 @@ def train_loop( | |||
482 | local_progress_bar.clear() | 483 | local_progress_bar.clear() |
483 | global_progress_bar.clear() | 484 | global_progress_bar.clear() |
484 | 485 | ||
485 | on_sample(global_step + global_step_offset) | 486 | with on_eval(): |
487 | on_sample(global_step + global_step_offset) | ||
486 | 488 | ||
487 | if epoch % checkpoint_frequency == 0 and epoch != 0: | 489 | if epoch % checkpoint_frequency == 0 and epoch != 0: |
488 | local_progress_bar.clear() | 490 | local_progress_bar.clear() |
@@ -606,7 +608,8 @@ def train_loop( | |||
606 | # Create the pipeline using using the trained modules and save it. | 608 | # Create the pipeline using using the trained modules and save it. |
607 | if accelerator.is_main_process: | 609 | if accelerator.is_main_process: |
608 | print("Finished!") | 610 | print("Finished!") |
609 | on_sample(global_step + global_step_offset) | 611 | with on_eval(): |
612 | on_sample(global_step + global_step_offset) | ||
610 | on_checkpoint(global_step + global_step_offset, "end") | 613 | on_checkpoint(global_step + global_step_offset, "end") |
611 | 614 | ||
612 | except KeyboardInterrupt: | 615 | except KeyboardInterrupt: |
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 7cdfc7f..fa51bc7 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
@@ -149,7 +149,7 @@ def dreambooth_strategy_callbacks( | |||
149 | if torch.cuda.is_available(): | 149 | if torch.cuda.is_available(): |
150 | torch.cuda.empty_cache() | 150 | torch.cuda.empty_cache() |
151 | 151 | ||
152 | @on_eval() | 152 | @torch.no_grad() |
153 | def on_sample(step): | 153 | def on_sample(step): |
154 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 154 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
155 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | 155 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
diff --git a/training/strategy/lora.py b/training/strategy/lora.py index 0f72a17..73ec8f2 100644 --- a/training/strategy/lora.py +++ b/training/strategy/lora.py | |||
@@ -146,7 +146,7 @@ def lora_strategy_callbacks( | |||
146 | if torch.cuda.is_available(): | 146 | if torch.cuda.is_available(): |
147 | torch.cuda.empty_cache() | 147 | torch.cuda.empty_cache() |
148 | 148 | ||
149 | @on_eval() | 149 | @torch.no_grad() |
150 | def on_sample(step): | 150 | def on_sample(step): |
151 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 151 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
152 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | 152 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index f00045f..08af89d 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
@@ -142,7 +142,7 @@ def textual_inversion_strategy_callbacks( | |||
142 | checkpoint_output_dir / f"{slugify(token)}_{step}_{postfix}.bin" | 142 | checkpoint_output_dir / f"{slugify(token)}_{step}_{postfix}.bin" |
143 | ) | 143 | ) |
144 | 144 | ||
145 | @on_eval() | 145 | @torch.no_grad() |
146 | def on_sample(step): | 146 | def on_sample(step): |
147 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 147 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
148 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | 148 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |