diff options
author | Volpeon <git@volpeon.ink> | 2023-05-11 18:37:43 +0200 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2023-05-11 18:37:43 +0200 |
commit | f0a171923cc8240177302f3dccb6177a2c646ab3 (patch) | |
tree | 15f11293c048c8c9b5d625dc27bb8662e15e685e | |
parent | Update (diff) | |
download | textual-inversion-diff-f0a171923cc8240177302f3dccb6177a2c646ab3.tar.gz textual-inversion-diff-f0a171923cc8240177302f3dccb6177a2c646ab3.tar.bz2 textual-inversion-diff-f0a171923cc8240177302f3dccb6177a2c646ab3.zip |
Update
-rw-r--r-- | environment.yaml | 8 | ||||
-rw-r--r-- | train_lora.py | 2 | ||||
-rw-r--r-- | train_ti.py | 24 | ||||
-rw-r--r-- | training/functional.py | 24 |
4 files changed, 45 insertions, 13 deletions
diff --git a/environment.yaml b/environment.yaml index dfbafaf..85033ce 100644 --- a/environment.yaml +++ b/environment.yaml | |||
@@ -6,6 +6,8 @@ channels: | |||
6 | - defaults | 6 | - defaults |
7 | - conda-forge | 7 | - conda-forge |
8 | dependencies: | 8 | dependencies: |
9 | - cuda-nvcc=11.8 | ||
10 | - cuda-cudart-dev=11.8 | ||
9 | - gcc=11.3.0 | 11 | - gcc=11.3.0 |
10 | - gxx=11.3.0 | 12 | - gxx=11.3.0 |
11 | - matplotlib=3.6.2 | 13 | - matplotlib=3.6.2 |
@@ -20,13 +22,13 @@ dependencies: | |||
20 | - -e git+https://github.com/huggingface/accelerate#egg=accelerate | 22 | - -e git+https://github.com/huggingface/accelerate#egg=accelerate |
21 | - -e git+https://github.com/huggingface/diffusers#egg=diffusers | 23 | - -e git+https://github.com/huggingface/diffusers#egg=diffusers |
22 | - -e git+https://github.com/facebookresearch/dadaptation#egg=dadaptation | 24 | - -e git+https://github.com/facebookresearch/dadaptation#egg=dadaptation |
25 | - --pre --extra-index-url https://download.hidet.org/whl hidet | ||
23 | - bitsandbytes==0.38.1 | 26 | - bitsandbytes==0.38.1 |
24 | - hidet==0.2.3 | ||
25 | - lion-pytorch==0.0.7 | 27 | - lion-pytorch==0.0.7 |
26 | - peft==0.2.0 | 28 | - peft==0.3.0 |
27 | - python-slugify>=6.1.2 | 29 | - python-slugify>=6.1.2 |
28 | - safetensors==0.3.1 | 30 | - safetensors==0.3.1 |
29 | - setuptools==65.6.3 | 31 | - setuptools==65.6.3 |
30 | - test-tube>=0.7.5 | 32 | - test-tube>=0.7.5 |
31 | - timm==0.8.17.dev0 | 33 | - timm==0.8.17.dev0 |
32 | - transformers==4.28.1 | 34 | - transformers==4.29.0 |
diff --git a/train_lora.py b/train_lora.py index 70fbae4..737af58 100644 --- a/train_lora.py +++ b/train_lora.py | |||
@@ -46,7 +46,7 @@ torch.backends.cudnn.benchmark = True | |||
46 | torch._dynamo.config.log_level = logging.WARNING | 46 | torch._dynamo.config.log_level = logging.WARNING |
47 | 47 | ||
48 | hidet.torch.dynamo_config.use_tensor_core(True) | 48 | hidet.torch.dynamo_config.use_tensor_core(True) |
49 | # hidet.torch.dynamo_config.use_attention(True) | 49 | hidet.torch.dynamo_config.use_attention(True) |
50 | hidet.torch.dynamo_config.search_space(0) | 50 | hidet.torch.dynamo_config.search_space(0) |
51 | 51 | ||
52 | 52 | ||
diff --git a/train_ti.py b/train_ti.py index 26f7941..6fd974e 100644 --- a/train_ti.py +++ b/train_ti.py | |||
@@ -5,13 +5,16 @@ from functools import partial | |||
5 | from pathlib import Path | 5 | from pathlib import Path |
6 | from typing import Union | 6 | from typing import Union |
7 | import math | 7 | import math |
8 | import warnings | ||
8 | 9 | ||
9 | import torch | 10 | import torch |
10 | import torch.utils.checkpoint | 11 | import torch.utils.checkpoint |
12 | import hidet | ||
11 | 13 | ||
12 | from accelerate import Accelerator | 14 | from accelerate import Accelerator |
13 | from accelerate.logging import get_logger | 15 | from accelerate.logging import get_logger |
14 | from accelerate.utils import LoggerType, set_seed | 16 | from accelerate.utils import LoggerType, set_seed |
17 | from diffusers.models.attention_processor import AttnProcessor | ||
15 | from timm.models import create_model | 18 | from timm.models import create_model |
16 | import transformers | 19 | import transformers |
17 | 20 | ||
@@ -28,10 +31,18 @@ from training.util import AverageMeter, save_args | |||
28 | 31 | ||
29 | logger = get_logger(__name__) | 32 | logger = get_logger(__name__) |
30 | 33 | ||
34 | warnings.filterwarnings('ignore') | ||
35 | |||
31 | 36 | ||
32 | torch.backends.cuda.matmul.allow_tf32 = True | 37 | torch.backends.cuda.matmul.allow_tf32 = True |
33 | torch.backends.cudnn.benchmark = True | 38 | torch.backends.cudnn.benchmark = True |
34 | 39 | ||
40 | # torch._dynamo.config.log_level = logging.WARNING | ||
41 | |||
42 | hidet.torch.dynamo_config.use_tensor_core(True) | ||
43 | hidet.torch.dynamo_config.use_attention(True) | ||
44 | hidet.torch.dynamo_config.search_space(0) | ||
45 | |||
35 | 46 | ||
36 | def parse_args(): | 47 | def parse_args(): |
37 | parser = argparse.ArgumentParser( | 48 | parser = argparse.ArgumentParser( |
@@ -706,6 +717,19 @@ def main(): | |||
706 | if args.use_xformers: | 717 | if args.use_xformers: |
707 | vae.set_use_memory_efficient_attention_xformers(True) | 718 | vae.set_use_memory_efficient_attention_xformers(True) |
708 | unet.enable_xformers_memory_efficient_attention() | 719 | unet.enable_xformers_memory_efficient_attention() |
720 | elif args.compile_unet: | ||
721 | unet.mid_block.attentions[0].transformer_blocks[0].attn1._use_2_0_attn = False | ||
722 | |||
723 | proc = AttnProcessor() | ||
724 | |||
725 | def fn_recursive_set_proc(module: torch.nn.Module): | ||
726 | if hasattr(module, "processor"): | ||
727 | module.processor = proc | ||
728 | |||
729 | for child in module.children(): | ||
730 | fn_recursive_set_proc(child) | ||
731 | |||
732 | fn_recursive_set_proc(unet) | ||
709 | 733 | ||
710 | if args.gradient_checkpointing: | 734 | if args.gradient_checkpointing: |
711 | unet.enable_gradient_checkpointing() | 735 | unet.enable_gradient_checkpointing() |
diff --git a/training/functional.py b/training/functional.py index eae5681..49c21c7 100644 --- a/training/functional.py +++ b/training/functional.py | |||
@@ -27,6 +27,7 @@ from models.convnext.discriminator import ConvNeXtDiscriminator | |||
27 | from training.util import AverageMeter | 27 | from training.util import AverageMeter |
28 | from training.sampler import ScheduleSampler, LossAwareSampler, UniformSampler | 28 | from training.sampler import ScheduleSampler, LossAwareSampler, UniformSampler |
29 | from util.slerp import slerp | 29 | from util.slerp import slerp |
30 | from util.noise import perlin_noise | ||
30 | 31 | ||
31 | 32 | ||
32 | def const(result=None): | 33 | def const(result=None): |
@@ -350,28 +351,33 @@ def loss_step( | |||
350 | device=latents.device, | 351 | device=latents.device, |
351 | generator=generator | 352 | generator=generator |
352 | ) | 353 | ) |
354 | applied_noise = noise | ||
353 | 355 | ||
354 | if offset_noise_strength != 0: | 356 | if offset_noise_strength != 0: |
355 | offset_noise = torch.randn( | 357 | applied_noise = applied_noise + offset_noise_strength * perlin_noise( |
356 | (latents.shape[0], latents.shape[1], 1, 1), | 358 | latents.shape, |
359 | res=1, | ||
360 | octaves=4, | ||
357 | dtype=latents.dtype, | 361 | dtype=latents.dtype, |
358 | device=latents.device, | 362 | device=latents.device, |
359 | generator=generator | 363 | generator=generator |
360 | ).expand(noise.shape) | 364 | ) |
361 | noise = noise + offset_noise_strength * offset_noise | ||
362 | 365 | ||
363 | if input_pertubation != 0: | 366 | if input_pertubation != 0: |
364 | new_noise = noise + input_pertubation * torch.randn_like(noise) | 367 | applied_noise = applied_noise + input_pertubation * torch.randn( |
368 | latents.shape, | ||
369 | dtype=latents.dtype, | ||
370 | layout=latents.layout, | ||
371 | device=latents.device, | ||
372 | generator=generator | ||
373 | ) | ||
365 | 374 | ||
366 | # Sample a random timestep for each image | 375 | # Sample a random timestep for each image |
367 | timesteps, weights = schedule_sampler.sample(bsz, latents.device) | 376 | timesteps, weights = schedule_sampler.sample(bsz, latents.device) |
368 | 377 | ||
369 | # Add noise to the latents according to the noise magnitude at each timestep | 378 | # Add noise to the latents according to the noise magnitude at each timestep |
370 | # (this is the forward diffusion process) | 379 | # (this is the forward diffusion process) |
371 | if input_pertubation != 0: | 380 | noisy_latents = noise_scheduler.add_noise(latents, applied_noise, timesteps) |
372 | noisy_latents = noise_scheduler.add_noise(latents, new_noise, timesteps) | ||
373 | else: | ||
374 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
375 | noisy_latents = noisy_latents.to(dtype=unet.dtype) | 381 | noisy_latents = noisy_latents.to(dtype=unet.dtype) |
376 | 382 | ||
377 | # Get the text embedding for conditioning | 383 | # Get the text embedding for conditioning |