diff options
| author | Volpeon <git@volpeon.ink> | 2022-10-06 17:15:22 +0200 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2022-10-06 17:15:22 +0200 |
| commit | 49a37b054ea7c1cdd8c0d7c44f3809ab8bee0693 (patch) | |
| tree | 8bd8fe59b2a5b60c2f6e7e1b48b53be7fbf1e155 /data/dreambooth | |
| parent | Inference: Add support for embeddings (diff) | |
| download | textual-inversion-diff-49a37b054ea7c1cdd8c0d7c44f3809ab8bee0693.tar.gz textual-inversion-diff-49a37b054ea7c1cdd8c0d7c44f3809ab8bee0693.tar.bz2 textual-inversion-diff-49a37b054ea7c1cdd8c0d7c44f3809ab8bee0693.zip | |
Update
Diffstat (limited to 'data/dreambooth')
| -rw-r--r-- | data/dreambooth/csv.py | 181 |
1 files changed, 0 insertions, 181 deletions
diff --git a/data/dreambooth/csv.py b/data/dreambooth/csv.py deleted file mode 100644 index abd329d..0000000 --- a/data/dreambooth/csv.py +++ /dev/null | |||
| @@ -1,181 +0,0 @@ | |||
| 1 | import math | ||
| 2 | import os | ||
| 3 | import pandas as pd | ||
| 4 | from pathlib import Path | ||
| 5 | import pytorch_lightning as pl | ||
| 6 | from PIL import Image | ||
| 7 | from torch.utils.data import Dataset, DataLoader, random_split | ||
| 8 | from torchvision import transforms | ||
| 9 | |||
| 10 | |||
| 11 | class CSVDataModule(pl.LightningDataModule): | ||
| 12 | def __init__(self, | ||
| 13 | batch_size, | ||
| 14 | data_file, | ||
| 15 | tokenizer, | ||
| 16 | instance_identifier, | ||
| 17 | class_identifier=None, | ||
| 18 | class_subdir="db_cls", | ||
| 19 | size=512, | ||
| 20 | repeats=100, | ||
| 21 | interpolation="bicubic", | ||
| 22 | center_crop=False, | ||
| 23 | valid_set_size=None, | ||
| 24 | generator=None, | ||
| 25 | collate_fn=None): | ||
| 26 | super().__init__() | ||
| 27 | |||
| 28 | self.data_file = Path(data_file) | ||
| 29 | |||
| 30 | if not self.data_file.is_file(): | ||
| 31 | raise ValueError("data_file must be a file") | ||
| 32 | |||
| 33 | self.data_root = self.data_file.parent | ||
| 34 | self.class_root = self.data_root.joinpath(class_subdir) | ||
| 35 | self.class_root.mkdir(parents=True, exist_ok=True) | ||
| 36 | |||
| 37 | self.tokenizer = tokenizer | ||
| 38 | self.instance_identifier = instance_identifier | ||
| 39 | self.class_identifier = class_identifier | ||
| 40 | self.size = size | ||
| 41 | self.repeats = repeats | ||
| 42 | self.center_crop = center_crop | ||
| 43 | self.interpolation = interpolation | ||
| 44 | self.valid_set_size = valid_set_size | ||
| 45 | self.generator = generator | ||
| 46 | self.collate_fn = collate_fn | ||
| 47 | self.batch_size = batch_size | ||
| 48 | |||
| 49 | def prepare_data(self): | ||
| 50 | metadata = pd.read_csv(self.data_file) | ||
| 51 | instance_image_paths = [self.data_root.joinpath(f) for f in metadata['image'].values] | ||
| 52 | class_image_paths = [self.class_root.joinpath(Path(f).name) for f in metadata['image'].values] | ||
| 53 | prompts = metadata['prompt'].values | ||
| 54 | nprompts = metadata['nprompt'].values if 'nprompt' in metadata else [""] * len(instance_image_paths) | ||
| 55 | skips = metadata['skip'].values if 'skip' in metadata else [""] * len(instance_image_paths) | ||
| 56 | self.data = [(i, c, p, n) | ||
| 57 | for i, c, p, n, s | ||
| 58 | in zip(instance_image_paths, class_image_paths, prompts, nprompts, skips) | ||
| 59 | if s != "x"] | ||
| 60 | |||
| 61 | def setup(self, stage=None): | ||
| 62 | valid_set_size = int(len(self.data) * 0.2) | ||
| 63 | if self.valid_set_size: | ||
| 64 | valid_set_size = min(valid_set_size, self.valid_set_size) | ||
| 65 | valid_set_size = max(valid_set_size, 1) | ||
| 66 | train_set_size = len(self.data) - valid_set_size | ||
| 67 | |||
| 68 | self.data_train, self.data_val = random_split(self.data, [train_set_size, valid_set_size], self.generator) | ||
| 69 | |||
| 70 | train_dataset = CSVDataset(self.data_train, self.tokenizer, | ||
| 71 | instance_identifier=self.instance_identifier, class_identifier=self.class_identifier, | ||
| 72 | size=self.size, interpolation=self.interpolation, | ||
| 73 | center_crop=self.center_crop, repeats=self.repeats) | ||
| 74 | val_dataset = CSVDataset(self.data_val, self.tokenizer, | ||
| 75 | instance_identifier=self.instance_identifier, | ||
| 76 | size=self.size, interpolation=self.interpolation, | ||
| 77 | center_crop=self.center_crop, repeats=self.repeats) | ||
| 78 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, drop_last=True, | ||
| 79 | shuffle=True, pin_memory=True, collate_fn=self.collate_fn) | ||
| 80 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, drop_last=True, | ||
| 81 | pin_memory=True, collate_fn=self.collate_fn) | ||
| 82 | |||
| 83 | def train_dataloader(self): | ||
| 84 | return self.train_dataloader_ | ||
| 85 | |||
| 86 | def val_dataloader(self): | ||
| 87 | return self.val_dataloader_ | ||
| 88 | |||
| 89 | |||
| 90 | class CSVDataset(Dataset): | ||
| 91 | def __init__(self, | ||
| 92 | data, | ||
| 93 | tokenizer, | ||
| 94 | instance_identifier, | ||
| 95 | class_identifier=None, | ||
| 96 | size=512, | ||
| 97 | repeats=1, | ||
| 98 | interpolation="bicubic", | ||
| 99 | center_crop=False, | ||
| 100 | ): | ||
| 101 | |||
| 102 | self.data = data | ||
| 103 | self.tokenizer = tokenizer | ||
| 104 | self.instance_identifier = instance_identifier | ||
| 105 | self.class_identifier = class_identifier | ||
| 106 | self.cache = {} | ||
| 107 | |||
| 108 | self.num_instance_images = len(self.data) | ||
| 109 | self._length = self.num_instance_images * repeats | ||
| 110 | |||
| 111 | self.interpolation = {"linear": transforms.InterpolationMode.NEAREST, | ||
| 112 | "bilinear": transforms.InterpolationMode.BILINEAR, | ||
| 113 | "bicubic": transforms.InterpolationMode.BICUBIC, | ||
| 114 | "lanczos": transforms.InterpolationMode.LANCZOS, | ||
| 115 | }[interpolation] | ||
| 116 | self.image_transforms = transforms.Compose( | ||
| 117 | [ | ||
| 118 | transforms.Resize(size, interpolation=self.interpolation), | ||
| 119 | transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | ||
| 120 | transforms.RandomHorizontalFlip(), | ||
| 121 | transforms.ToTensor(), | ||
| 122 | transforms.Normalize([0.5], [0.5]), | ||
| 123 | ] | ||
| 124 | ) | ||
| 125 | |||
| 126 | def __len__(self): | ||
| 127 | return self._length | ||
| 128 | |||
| 129 | def get_example(self, i): | ||
| 130 | instance_image_path, class_image_path, prompt, nprompt = self.data[i % self.num_instance_images] | ||
| 131 | |||
| 132 | if instance_image_path in self.cache: | ||
| 133 | return self.cache[instance_image_path] | ||
| 134 | |||
| 135 | example = {} | ||
| 136 | |||
| 137 | example["prompts"] = prompt | ||
| 138 | example["nprompts"] = nprompt | ||
| 139 | |||
| 140 | instance_image = Image.open(instance_image_path) | ||
| 141 | if not instance_image.mode == "RGB": | ||
| 142 | instance_image = instance_image.convert("RGB") | ||
| 143 | |||
| 144 | example["instance_images"] = instance_image | ||
| 145 | example["instance_prompt_ids"] = self.tokenizer( | ||
| 146 | prompt.format(self.instance_identifier), | ||
| 147 | padding="do_not_pad", | ||
| 148 | truncation=True, | ||
| 149 | max_length=self.tokenizer.model_max_length, | ||
| 150 | ).input_ids | ||
| 151 | |||
| 152 | if self.class_identifier is not None: | ||
| 153 | class_image = Image.open(class_image_path) | ||
| 154 | if not class_image.mode == "RGB": | ||
| 155 | class_image = class_image.convert("RGB") | ||
| 156 | |||
| 157 | example["class_images"] = class_image | ||
| 158 | example["class_prompt_ids"] = self.tokenizer( | ||
| 159 | prompt.format(self.class_identifier), | ||
| 160 | padding="do_not_pad", | ||
| 161 | truncation=True, | ||
| 162 | max_length=self.tokenizer.model_max_length, | ||
| 163 | ).input_ids | ||
| 164 | |||
| 165 | self.cache[instance_image_path] = example | ||
| 166 | return example | ||
| 167 | |||
| 168 | def __getitem__(self, i): | ||
| 169 | example = {} | ||
| 170 | unprocessed_example = self.get_example(i) | ||
| 171 | |||
| 172 | example["prompts"] = unprocessed_example["prompts"] | ||
| 173 | example["nprompts"] = unprocessed_example["nprompts"] | ||
| 174 | example["instance_images"] = self.image_transforms(unprocessed_example["instance_images"]) | ||
| 175 | example["instance_prompt_ids"] = unprocessed_example["instance_prompt_ids"] | ||
| 176 | |||
| 177 | if self.class_identifier is not None: | ||
| 178 | example["class_images"] = self.image_transforms(unprocessed_example["class_images"]) | ||
| 179 | example["class_prompt_ids"] = unprocessed_example["class_prompt_ids"] | ||
| 180 | |||
| 181 | return example | ||
