diff options
author | Volpeon <git@volpeon.ink> | 2022-10-06 17:15:22 +0200 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2022-10-06 17:15:22 +0200 |
commit | 49a37b054ea7c1cdd8c0d7c44f3809ab8bee0693 (patch) | |
tree | 8bd8fe59b2a5b60c2f6e7e1b48b53be7fbf1e155 /data/textual_inversion | |
parent | Inference: Add support for embeddings (diff) | |
download | textual-inversion-diff-49a37b054ea7c1cdd8c0d7c44f3809ab8bee0693.tar.gz textual-inversion-diff-49a37b054ea7c1cdd8c0d7c44f3809ab8bee0693.tar.bz2 textual-inversion-diff-49a37b054ea7c1cdd8c0d7c44f3809ab8bee0693.zip |
Update
Diffstat (limited to 'data/textual_inversion')
-rw-r--r-- | data/textual_inversion/csv.py | 150 |
1 files changed, 0 insertions, 150 deletions
diff --git a/data/textual_inversion/csv.py b/data/textual_inversion/csv.py deleted file mode 100644 index 4c5e27e..0000000 --- a/data/textual_inversion/csv.py +++ /dev/null | |||
@@ -1,150 +0,0 @@ | |||
1 | import os | ||
2 | import numpy as np | ||
3 | import pandas as pd | ||
4 | from pathlib import Path | ||
5 | import math | ||
6 | import pytorch_lightning as pl | ||
7 | from PIL import Image | ||
8 | from torch.utils.data import Dataset, DataLoader, random_split | ||
9 | from torchvision import transforms | ||
10 | |||
11 | |||
12 | class CSVDataModule(pl.LightningDataModule): | ||
13 | def __init__(self, | ||
14 | batch_size, | ||
15 | data_file, | ||
16 | tokenizer, | ||
17 | size=512, | ||
18 | repeats=100, | ||
19 | interpolation="bicubic", | ||
20 | placeholder_token="*", | ||
21 | center_crop=False, | ||
22 | valid_set_size=None, | ||
23 | generator=None): | ||
24 | super().__init__() | ||
25 | |||
26 | self.data_file = Path(data_file) | ||
27 | |||
28 | if not self.data_file.is_file(): | ||
29 | raise ValueError("data_file must be a file") | ||
30 | |||
31 | self.data_root = self.data_file.parent | ||
32 | self.tokenizer = tokenizer | ||
33 | self.size = size | ||
34 | self.repeats = repeats | ||
35 | self.placeholder_token = placeholder_token | ||
36 | self.center_crop = center_crop | ||
37 | self.interpolation = interpolation | ||
38 | self.valid_set_size = valid_set_size | ||
39 | self.generator = generator | ||
40 | |||
41 | self.batch_size = batch_size | ||
42 | |||
43 | def prepare_data(self): | ||
44 | metadata = pd.read_csv(self.data_file) | ||
45 | image_paths = [os.path.join(self.data_root, f_path) for f_path in metadata['image'].values] | ||
46 | prompts = metadata['prompt'].values | ||
47 | nprompts = metadata['nprompt'].values if 'nprompt' in metadata else [""] * len(image_paths) | ||
48 | skips = metadata['skip'].values if 'skip' in metadata else [""] * len(image_paths) | ||
49 | self.data_full = [(i, p, n) for i, p, n, s in zip(image_paths, prompts, nprompts, skips) if s != "x"] | ||
50 | |||
51 | def setup(self, stage=None): | ||
52 | valid_set_size = int(len(self.data_full) * 0.2) | ||
53 | if self.valid_set_size: | ||
54 | valid_set_size = min(valid_set_size, self.valid_set_size) | ||
55 | valid_set_size = max(valid_set_size, 1) | ||
56 | train_set_size = len(self.data_full) - valid_set_size | ||
57 | |||
58 | self.data_train, self.data_val = random_split(self.data_full, [train_set_size, valid_set_size], self.generator) | ||
59 | |||
60 | train_dataset = CSVDataset(self.data_train, self.tokenizer, size=self.size, repeats=self.repeats, interpolation=self.interpolation, | ||
61 | placeholder_token=self.placeholder_token, center_crop=self.center_crop) | ||
62 | val_dataset = CSVDataset(self.data_val, self.tokenizer, size=self.size, repeats=self.repeats, interpolation=self.interpolation, | ||
63 | placeholder_token=self.placeholder_token, center_crop=self.center_crop) | ||
64 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, pin_memory=True, shuffle=True) | ||
65 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, pin_memory=True) | ||
66 | |||
67 | def train_dataloader(self): | ||
68 | return self.train_dataloader_ | ||
69 | |||
70 | def val_dataloader(self): | ||
71 | return self.val_dataloader_ | ||
72 | |||
73 | |||
74 | class CSVDataset(Dataset): | ||
75 | def __init__(self, | ||
76 | data, | ||
77 | tokenizer, | ||
78 | size=512, | ||
79 | repeats=1, | ||
80 | interpolation="bicubic", | ||
81 | placeholder_token="*", | ||
82 | center_crop=False, | ||
83 | batch_size=1, | ||
84 | ): | ||
85 | |||
86 | self.data = data | ||
87 | self.tokenizer = tokenizer | ||
88 | self.placeholder_token = placeholder_token | ||
89 | self.batch_size = batch_size | ||
90 | self.cache = {} | ||
91 | |||
92 | self.num_instance_images = len(self.data) | ||
93 | self._length = self.num_instance_images * repeats | ||
94 | |||
95 | self.interpolation = {"linear": transforms.InterpolationMode.NEAREST, | ||
96 | "bilinear": transforms.InterpolationMode.BILINEAR, | ||
97 | "bicubic": transforms.InterpolationMode.BICUBIC, | ||
98 | "lanczos": transforms.InterpolationMode.LANCZOS, | ||
99 | }[interpolation] | ||
100 | self.image_transforms = transforms.Compose( | ||
101 | [ | ||
102 | transforms.Resize(size, interpolation=self.interpolation), | ||
103 | transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | ||
104 | transforms.RandomHorizontalFlip(), | ||
105 | transforms.ToTensor(), | ||
106 | transforms.Normalize([0.5], [0.5]), | ||
107 | ] | ||
108 | ) | ||
109 | |||
110 | def __len__(self): | ||
111 | return math.ceil(self._length / self.batch_size) * self.batch_size | ||
112 | |||
113 | def get_example(self, i): | ||
114 | image_path, prompt, nprompt = self.data[i % self.num_instance_images] | ||
115 | |||
116 | if image_path in self.cache: | ||
117 | return self.cache[image_path] | ||
118 | |||
119 | example = {} | ||
120 | |||
121 | instance_image = Image.open(image_path) | ||
122 | if not instance_image.mode == "RGB": | ||
123 | instance_image = instance_image.convert("RGB") | ||
124 | |||
125 | prompt = prompt.format(self.placeholder_token) | ||
126 | |||
127 | example["prompts"] = prompt | ||
128 | example["nprompts"] = nprompt | ||
129 | example["pixel_values"] = instance_image | ||
130 | example["input_ids"] = self.tokenizer( | ||
131 | prompt, | ||
132 | padding="max_length", | ||
133 | truncation=True, | ||
134 | max_length=self.tokenizer.model_max_length, | ||
135 | return_tensors="pt", | ||
136 | ).input_ids[0] | ||
137 | |||
138 | self.cache[image_path] = example | ||
139 | return example | ||
140 | |||
141 | def __getitem__(self, i): | ||
142 | example = {} | ||
143 | unprocessed_example = self.get_example(i) | ||
144 | |||
145 | example["prompts"] = unprocessed_example["prompts"] | ||
146 | example["nprompts"] = unprocessed_example["nprompts"] | ||
147 | example["input_ids"] = unprocessed_example["input_ids"] | ||
148 | example["pixel_values"] = self.image_transforms(unprocessed_example["pixel_values"]) | ||
149 | |||
150 | return example | ||