diff options
author | Volpeon <git@volpeon.ink> | 2022-09-27 12:39:43 +0200 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2022-09-27 12:39:43 +0200 |
commit | 73fe0a75cd08244f91d1baea7b63b42f9e4be08c (patch) | |
tree | 9d15c9726ad5fbe528ac40a8b91e9d9c0d3cf6fd /data | |
parent | Undo textual inversion dataset improvements (diff) | |
download | textual-inversion-diff-73fe0a75cd08244f91d1baea7b63b42f9e4be08c.tar.gz textual-inversion-diff-73fe0a75cd08244f91d1baea7b63b42f9e4be08c.tar.bz2 textual-inversion-diff-73fe0a75cd08244f91d1baea7b63b42f9e4be08c.zip |
Added Dreambooth training script
Diffstat (limited to 'data')
-rw-r--r-- | data/dreambooth/csv.py | 177 | ||||
-rw-r--r-- | data/dreambooth/prompt.py | 16 |
2 files changed, 193 insertions, 0 deletions
diff --git a/data/dreambooth/csv.py b/data/dreambooth/csv.py new file mode 100644 index 0000000..04df4c6 --- /dev/null +++ b/data/dreambooth/csv.py | |||
@@ -0,0 +1,177 @@ | |||
1 | import os | ||
2 | import pandas as pd | ||
3 | from pathlib import Path | ||
4 | import PIL | ||
5 | import pytorch_lightning as pl | ||
6 | from PIL import Image | ||
7 | from torch.utils.data import Dataset, DataLoader, random_split | ||
8 | from torchvision import transforms | ||
9 | |||
10 | |||
11 | class CSVDataModule(pl.LightningDataModule): | ||
12 | def __init__(self, | ||
13 | batch_size, | ||
14 | data_root, | ||
15 | tokenizer, | ||
16 | instance_prompt, | ||
17 | class_data_root=None, | ||
18 | class_prompt=None, | ||
19 | size=512, | ||
20 | repeats=100, | ||
21 | interpolation="bicubic", | ||
22 | identifier="*", | ||
23 | center_crop=False, | ||
24 | collate_fn=None): | ||
25 | super().__init__() | ||
26 | |||
27 | self.data_root = data_root | ||
28 | self.tokenizer = tokenizer | ||
29 | self.instance_prompt = instance_prompt | ||
30 | self.class_data_root = class_data_root | ||
31 | self.class_prompt = class_prompt | ||
32 | self.size = size | ||
33 | self.repeats = repeats | ||
34 | self.identifier = identifier | ||
35 | self.center_crop = center_crop | ||
36 | self.interpolation = interpolation | ||
37 | self.collate_fn = collate_fn | ||
38 | self.batch_size = batch_size | ||
39 | |||
40 | def prepare_data(self): | ||
41 | metadata = pd.read_csv(f'{self.data_root}/list.csv') | ||
42 | image_paths = [os.path.join(self.data_root, f_path) for f_path in metadata['image'].values] | ||
43 | captions = [caption for caption in metadata['caption'].values] | ||
44 | skips = [skip for skip in metadata['skip'].values] | ||
45 | self.data_full = [(img, cap) for img, cap, skip in zip(image_paths, captions, skips) if skip != "x"] | ||
46 | |||
47 | def setup(self, stage=None): | ||
48 | train_set_size = int(len(self.data_full) * 0.8) | ||
49 | valid_set_size = len(self.data_full) - train_set_size | ||
50 | self.data_train, self.data_val = random_split(self.data_full, [train_set_size, valid_set_size]) | ||
51 | |||
52 | train_dataset = CSVDataset(self.data_train, self.tokenizer, instance_prompt=self.instance_prompt, | ||
53 | class_data_root=self.class_data_root, | ||
54 | class_prompt=self.class_prompt, size=self.size, repeats=self.repeats, | ||
55 | interpolation=self.interpolation, identifier=self.identifier, | ||
56 | center_crop=self.center_crop) | ||
57 | val_dataset = CSVDataset(self.data_val, self.tokenizer, instance_prompt=self.instance_prompt, | ||
58 | class_data_root=self.class_data_root, | ||
59 | class_prompt=self.class_prompt, size=self.size, interpolation=self.interpolation, | ||
60 | identifier=self.identifier, center_crop=self.center_crop) | ||
61 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, | ||
62 | shuffle=True, collate_fn=self.collate_fn) | ||
63 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, collate_fn=self.collate_fn) | ||
64 | |||
65 | def train_dataloader(self): | ||
66 | return self.train_dataloader_ | ||
67 | |||
68 | def val_dataloader(self): | ||
69 | return self.val_dataloader_ | ||
70 | |||
71 | |||
72 | class CSVDataset(Dataset): | ||
73 | def __init__(self, | ||
74 | data, | ||
75 | tokenizer, | ||
76 | instance_prompt, | ||
77 | class_data_root=None, | ||
78 | class_prompt=None, | ||
79 | size=512, | ||
80 | repeats=1, | ||
81 | interpolation="bicubic", | ||
82 | identifier="*", | ||
83 | center_crop=False, | ||
84 | ): | ||
85 | |||
86 | self.data = data | ||
87 | self.tokenizer = tokenizer | ||
88 | self.instance_prompt = instance_prompt | ||
89 | |||
90 | self.num_instance_images = len(self.data) | ||
91 | self._length = self.num_instance_images * repeats | ||
92 | |||
93 | self.identifier = identifier | ||
94 | |||
95 | if class_data_root is not None: | ||
96 | self.class_data_root = Path(class_data_root) | ||
97 | self.class_data_root.mkdir(parents=True, exist_ok=True) | ||
98 | |||
99 | self.class_images = list(Path(class_data_root).iterdir()) | ||
100 | self.num_class_images = len(self.class_images) | ||
101 | self._length = max(self.num_class_images, self.num_instance_images) | ||
102 | |||
103 | self.class_prompt = class_prompt | ||
104 | else: | ||
105 | self.class_data_root = None | ||
106 | |||
107 | self.interpolation = {"linear": PIL.Image.LINEAR, | ||
108 | "bilinear": PIL.Image.BILINEAR, | ||
109 | "bicubic": PIL.Image.BICUBIC, | ||
110 | "lanczos": PIL.Image.LANCZOS, | ||
111 | }[interpolation] | ||
112 | self.image_transforms = transforms.Compose( | ||
113 | [ | ||
114 | transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), | ||
115 | transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | ||
116 | transforms.ToTensor(), | ||
117 | transforms.Normalize([0.5], [0.5]), | ||
118 | ] | ||
119 | ) | ||
120 | |||
121 | self.cache = {} | ||
122 | |||
123 | def __len__(self): | ||
124 | return self._length | ||
125 | |||
126 | def get_example(self, i): | ||
127 | image_path, text = self.data[i % self.num_instance_images] | ||
128 | |||
129 | if image_path in self.cache: | ||
130 | return self.cache[image_path] | ||
131 | |||
132 | example = {} | ||
133 | |||
134 | instance_image = Image.open(image_path) | ||
135 | if not instance_image.mode == "RGB": | ||
136 | instance_image = instance_image.convert("RGB") | ||
137 | |||
138 | text = text.format(self.identifier) | ||
139 | |||
140 | example["prompts"] = text | ||
141 | example["instance_images"] = instance_image | ||
142 | example["instance_prompt_ids"] = self.tokenizer( | ||
143 | self.instance_prompt, | ||
144 | padding="do_not_pad", | ||
145 | truncation=True, | ||
146 | max_length=self.tokenizer.model_max_length, | ||
147 | ).input_ids | ||
148 | |||
149 | if self.class_data_root: | ||
150 | class_image = Image.open(self.class_images[i % self.num_class_images]) | ||
151 | if not class_image.mode == "RGB": | ||
152 | class_image = class_image.convert("RGB") | ||
153 | |||
154 | example["class_images"] = class_image | ||
155 | example["class_prompt_ids"] = self.tokenizer( | ||
156 | self.class_prompt, | ||
157 | padding="do_not_pad", | ||
158 | truncation=True, | ||
159 | max_length=self.tokenizer.model_max_length, | ||
160 | ).input_ids | ||
161 | |||
162 | self.cache[image_path] = example | ||
163 | return example | ||
164 | |||
165 | def __getitem__(self, i): | ||
166 | example = {} | ||
167 | unprocessed_example = self.get_example(i) | ||
168 | |||
169 | example["prompts"] = unprocessed_example["prompts"] | ||
170 | example["instance_images"] = self.image_transforms(unprocessed_example["instance_images"]) | ||
171 | example["instance_prompt_ids"] = unprocessed_example["instance_prompt_ids"] | ||
172 | |||
173 | if self.class_data_root: | ||
174 | example["class_images"] = self.image_transforms(unprocessed_example["class_images"]) | ||
175 | example["class_prompt_ids"] = unprocessed_example["class_prompt_ids"] | ||
176 | |||
177 | return example | ||
diff --git a/data/dreambooth/prompt.py b/data/dreambooth/prompt.py new file mode 100644 index 0000000..34f510d --- /dev/null +++ b/data/dreambooth/prompt.py | |||
@@ -0,0 +1,16 @@ | |||
1 | from torch.utils.data import Dataset | ||
2 | |||
3 | |||
4 | class PromptDataset(Dataset): | ||
5 | def __init__(self, prompt, num_samples): | ||
6 | self.prompt = prompt | ||
7 | self.num_samples = num_samples | ||
8 | |||
9 | def __len__(self): | ||
10 | return self.num_samples | ||
11 | |||
12 | def __getitem__(self, index): | ||
13 | example = {} | ||
14 | example["prompt"] = self.prompt | ||
15 | example["index"] = index | ||
16 | return example | ||