diff options
| author | Volpeon <git@volpeon.ink> | 2022-09-27 22:16:13 +0200 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2022-09-27 22:16:13 +0200 |
| commit | a8a5abae42f6f42056cc27e0cf5313aab080c3a7 (patch) | |
| tree | 32c163bbc58aa2f827c5ba5108df81dc14fbe130 /infer.py | |
| parent | Incorporate upstream changes (diff) | |
| download | textual-inversion-diff-a8a5abae42f6f42056cc27e0cf5313aab080c3a7.tar.gz textual-inversion-diff-a8a5abae42f6f42056cc27e0cf5313aab080c3a7.tar.bz2 textual-inversion-diff-a8a5abae42f6f42056cc27e0cf5313aab080c3a7.zip | |
Various improvements, added inference script
Diffstat (limited to 'infer.py')
| -rw-r--r-- | infer.py | 121 |
1 files changed, 121 insertions, 0 deletions
diff --git a/infer.py b/infer.py new file mode 100644 index 0000000..b9e9ff7 --- /dev/null +++ b/infer.py | |||
| @@ -0,0 +1,121 @@ | |||
| 1 | import argparse | ||
| 2 | import datetime | ||
| 3 | from pathlib import Path | ||
| 4 | from torch import autocast | ||
| 5 | from diffusers import StableDiffusionPipeline | ||
| 6 | import torch | ||
| 7 | import json | ||
| 8 | from diffusers import AutoencoderKL, StableDiffusionPipeline, UNet2DConditionModel, PNDMScheduler | ||
| 9 | from transformers import CLIPTextModel, CLIPTokenizer, CLIPFeatureExtractor | ||
| 10 | from slugify import slugify | ||
| 11 | from pipelines.stable_diffusion.no_check import NoCheck | ||
| 12 | |||
| 13 | model_id = "path-to-your-trained-model" | ||
| 14 | |||
| 15 | prompt = "A photo of sks dog in a bucket" | ||
| 16 | |||
| 17 | |||
| 18 | def parse_args(): | ||
| 19 | parser = argparse.ArgumentParser( | ||
| 20 | description="Simple example of a training script." | ||
| 21 | ) | ||
| 22 | parser.add_argument( | ||
| 23 | "--model", | ||
| 24 | type=str, | ||
| 25 | default=None, | ||
| 26 | ) | ||
| 27 | parser.add_argument( | ||
| 28 | "--prompt", | ||
| 29 | type=str, | ||
| 30 | default=None, | ||
| 31 | ) | ||
| 32 | parser.add_argument( | ||
| 33 | "--batch_size", | ||
| 34 | type=int, | ||
| 35 | default=1, | ||
| 36 | ) | ||
| 37 | parser.add_argument( | ||
| 38 | "--batch_num", | ||
| 39 | type=int, | ||
| 40 | default=50, | ||
| 41 | ) | ||
| 42 | parser.add_argument( | ||
| 43 | "--steps", | ||
| 44 | type=int, | ||
| 45 | default=80, | ||
| 46 | ) | ||
| 47 | parser.add_argument( | ||
| 48 | "--scale", | ||
| 49 | type=int, | ||
| 50 | default=7.5, | ||
| 51 | ) | ||
| 52 | parser.add_argument( | ||
| 53 | "--seed", | ||
| 54 | type=int, | ||
| 55 | default=None, | ||
| 56 | ) | ||
| 57 | parser.add_argument( | ||
| 58 | "--output_dir", | ||
| 59 | type=str, | ||
| 60 | default="inference", | ||
| 61 | ) | ||
| 62 | parser.add_argument( | ||
| 63 | "--config", | ||
| 64 | type=str, | ||
| 65 | default=None, | ||
| 66 | ) | ||
| 67 | |||
| 68 | args = parser.parse_args() | ||
| 69 | if args.config is not None: | ||
| 70 | with open(args.config, 'rt') as f: | ||
| 71 | args = parser.parse_args( | ||
| 72 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
| 73 | |||
| 74 | return args | ||
| 75 | |||
| 76 | |||
| 77 | def main(): | ||
| 78 | args = parse_args() | ||
| 79 | |||
| 80 | seed = args.seed or torch.random.seed() | ||
| 81 | generator = torch.Generator(device="cuda").manual_seed(seed) | ||
| 82 | |||
| 83 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 84 | output_dir = Path(args.output_dir).joinpath(f"{now}_{seed}_{slugify(args.prompt)[:80]}") | ||
| 85 | output_dir.mkdir(parents=True, exist_ok=True) | ||
| 86 | |||
| 87 | tokenizer = CLIPTokenizer.from_pretrained(args.model + '/tokenizer', torch_dtype=torch.bfloat16) | ||
| 88 | text_encoder = CLIPTextModel.from_pretrained(args.model + '/text_encoder', torch_dtype=torch.bfloat16) | ||
| 89 | vae = AutoencoderKL.from_pretrained(args.model + '/vae', torch_dtype=torch.bfloat16) | ||
| 90 | unet = UNet2DConditionModel.from_pretrained(args.model + '/unet', torch_dtype=torch.bfloat16) | ||
| 91 | feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32", torch_dtype=torch.bfloat16) | ||
| 92 | |||
| 93 | pipeline = StableDiffusionPipeline( | ||
| 94 | text_encoder=text_encoder, | ||
| 95 | vae=vae, | ||
| 96 | unet=unet, | ||
| 97 | tokenizer=tokenizer, | ||
| 98 | scheduler=PNDMScheduler( | ||
| 99 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True | ||
| 100 | ), | ||
| 101 | safety_checker=NoCheck(), | ||
| 102 | feature_extractor=feature_extractor | ||
| 103 | ) | ||
| 104 | pipeline.enable_attention_slicing() | ||
| 105 | pipeline.to("cuda") | ||
| 106 | |||
| 107 | with autocast("cuda"): | ||
| 108 | for i in range(args.batch_num): | ||
| 109 | images = pipeline( | ||
| 110 | [args.prompt] * args.batch_size, | ||
| 111 | num_inference_steps=args.steps, | ||
| 112 | guidance_scale=args.scale, | ||
| 113 | generator=generator, | ||
| 114 | ).images | ||
| 115 | |||
| 116 | for j, image in enumerate(images): | ||
| 117 | image.save(output_dir.joinpath(f"{i * args.batch_size + j}.jpg")) | ||
| 118 | |||
| 119 | |||
| 120 | if __name__ == "__main__": | ||
| 121 | main() | ||
