diff options
| author | Volpeon <git@volpeon.ink> | 2022-09-26 16:36:42 +0200 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2022-09-26 16:36:42 +0200 |
| commit | 5588b93859c4380082a7e46bf5bef2119ec1907a (patch) | |
| tree | 05a8292201912eb6f417eb2740c86df2153d1095 /main.py | |
| download | textual-inversion-diff-5588b93859c4380082a7e46bf5bef2119ec1907a.tar.gz textual-inversion-diff-5588b93859c4380082a7e46bf5bef2119ec1907a.tar.bz2 textual-inversion-diff-5588b93859c4380082a7e46bf5bef2119ec1907a.zip | |
Init
Diffstat (limited to 'main.py')
| -rw-r--r-- | main.py | 784 |
1 files changed, 784 insertions, 0 deletions
| @@ -0,0 +1,784 @@ | |||
| 1 | import argparse | ||
| 2 | import itertools | ||
| 3 | import math | ||
| 4 | import os | ||
| 5 | import random | ||
| 6 | import datetime | ||
| 7 | from pathlib import Path | ||
| 8 | from typing import Optional | ||
| 9 | |||
| 10 | import numpy as np | ||
| 11 | import torch | ||
| 12 | import torch.nn as nn | ||
| 13 | import torch.nn.functional as F | ||
| 14 | import torch.utils.checkpoint | ||
| 15 | from torch.utils.data import Dataset | ||
| 16 | |||
| 17 | import PIL | ||
| 18 | from accelerate import Accelerator | ||
| 19 | from accelerate.logging import get_logger | ||
| 20 | from accelerate.utils import LoggerType, set_seed | ||
| 21 | from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, LMSDiscreteScheduler, StableDiffusionPipeline, UNet2DConditionModel | ||
| 22 | from diffusers.optimization import get_scheduler | ||
| 23 | from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker | ||
| 24 | from einops import rearrange | ||
| 25 | from pipelines.stable_diffusion.no_check import NoCheck | ||
| 26 | from huggingface_hub import HfFolder, Repository, whoami | ||
| 27 | from PIL import Image | ||
| 28 | from tqdm.auto import tqdm | ||
| 29 | from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer | ||
| 30 | from slugify import slugify | ||
| 31 | import json | ||
| 32 | import os | ||
| 33 | import sys | ||
| 34 | |||
| 35 | from data import CSVDataModule | ||
| 36 | |||
| 37 | logger = get_logger(__name__) | ||
| 38 | |||
| 39 | |||
| 40 | def parse_args(): | ||
| 41 | parser = argparse.ArgumentParser( | ||
| 42 | description="Simple example of a training script.") | ||
| 43 | parser.add_argument( | ||
| 44 | "--pretrained_model_name_or_path", | ||
| 45 | type=str, | ||
| 46 | default=None, | ||
| 47 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
| 48 | ) | ||
| 49 | parser.add_argument( | ||
| 50 | "--tokenizer_name", | ||
| 51 | type=str, | ||
| 52 | default=None, | ||
| 53 | help="Pretrained tokenizer name or path if not the same as model_name", | ||
| 54 | ) | ||
| 55 | parser.add_argument( | ||
| 56 | "--train_data_dir", type=str, default=None, help="A folder containing the training data." | ||
| 57 | ) | ||
| 58 | parser.add_argument( | ||
| 59 | "--placeholder_token", | ||
| 60 | type=str, | ||
| 61 | default=None, | ||
| 62 | help="A token to use as a placeholder for the concept.", | ||
| 63 | ) | ||
| 64 | parser.add_argument( | ||
| 65 | "--initializer_token", type=str, default=None, help="A token to use as initializer word." | ||
| 66 | ) | ||
| 67 | parser.add_argument( | ||
| 68 | "--vectors_per_token", type=int, default=1, help="Vectors per token." | ||
| 69 | ) | ||
| 70 | parser.add_argument("--repeats", type=int, default=100, | ||
| 71 | help="How many times to repeat the training data.") | ||
| 72 | parser.add_argument( | ||
| 73 | "--output_dir", | ||
| 74 | type=str, | ||
| 75 | default="text-inversion-model", | ||
| 76 | help="The output directory where the model predictions and checkpoints will be written.", | ||
| 77 | ) | ||
| 78 | parser.add_argument("--seed", type=int, default=None, | ||
| 79 | help="A seed for reproducible training.") | ||
| 80 | parser.add_argument( | ||
| 81 | "--resolution", | ||
| 82 | type=int, | ||
| 83 | default=512, | ||
| 84 | help=( | ||
| 85 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
| 86 | " resolution" | ||
| 87 | ), | ||
| 88 | ) | ||
| 89 | parser.add_argument( | ||
| 90 | "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" | ||
| 91 | ) | ||
| 92 | parser.add_argument( | ||
| 93 | "--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader." | ||
| 94 | ) | ||
| 95 | parser.add_argument("--num_train_epochs", type=int, default=100) | ||
| 96 | parser.add_argument( | ||
| 97 | "--max_train_steps", | ||
| 98 | type=int, | ||
| 99 | default=5000, | ||
| 100 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | ||
| 101 | ) | ||
| 102 | parser.add_argument( | ||
| 103 | "--gradient_accumulation_steps", | ||
| 104 | type=int, | ||
| 105 | default=1, | ||
| 106 | help="Number of updates steps to accumulate before performing a backward/update pass.", | ||
| 107 | ) | ||
| 108 | parser.add_argument( | ||
| 109 | "--learning_rate", | ||
| 110 | type=float, | ||
| 111 | default=1e-4, | ||
| 112 | help="Initial learning rate (after the potential warmup period) to use.", | ||
| 113 | ) | ||
| 114 | parser.add_argument( | ||
| 115 | "--scale_lr", | ||
| 116 | action="store_true", | ||
| 117 | default=True, | ||
| 118 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | ||
| 119 | ) | ||
| 120 | parser.add_argument( | ||
| 121 | "--lr_scheduler", | ||
| 122 | type=str, | ||
| 123 | default="constant", | ||
| 124 | help=( | ||
| 125 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | ||
| 126 | ' "constant", "constant_with_warmup"]' | ||
| 127 | ), | ||
| 128 | ) | ||
| 129 | parser.add_argument( | ||
| 130 | "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | ||
| 131 | ) | ||
| 132 | parser.add_argument("--adam_beta1", type=float, default=0.9, | ||
| 133 | help="The beta1 parameter for the Adam optimizer.") | ||
| 134 | parser.add_argument("--adam_beta2", type=float, default=0.999, | ||
| 135 | help="The beta2 parameter for the Adam optimizer.") | ||
| 136 | parser.add_argument("--adam_weight_decay", type=float, | ||
| 137 | default=1e-2, help="Weight decay to use.") | ||
| 138 | parser.add_argument("--adam_epsilon", type=float, default=1e-08, | ||
| 139 | help="Epsilon value for the Adam optimizer") | ||
| 140 | parser.add_argument( | ||
| 141 | "--mixed_precision", | ||
| 142 | type=str, | ||
| 143 | default="no", | ||
| 144 | choices=["no", "fp16", "bf16"], | ||
| 145 | help=( | ||
| 146 | "Whether to use mixed precision. Choose" | ||
| 147 | "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | ||
| 148 | "and an Nvidia Ampere GPU." | ||
| 149 | ), | ||
| 150 | ) | ||
| 151 | parser.add_argument("--local_rank", type=int, default=-1, | ||
| 152 | help="For distributed training: local_rank") | ||
| 153 | parser.add_argument( | ||
| 154 | "--checkpoint_frequency", | ||
| 155 | type=int, | ||
| 156 | default=500, | ||
| 157 | help="How often to save a checkpoint and sample image", | ||
| 158 | ) | ||
| 159 | parser.add_argument( | ||
| 160 | "--sample_image_size", | ||
| 161 | type=int, | ||
| 162 | default=512, | ||
| 163 | help="Size of sample images", | ||
| 164 | ) | ||
| 165 | parser.add_argument( | ||
| 166 | "--stable_sample_batches", | ||
| 167 | type=int, | ||
| 168 | default=1, | ||
| 169 | help="Number of fixed seed sample batches to generate per checkpoint", | ||
| 170 | ) | ||
| 171 | parser.add_argument( | ||
| 172 | "--random_sample_batches", | ||
| 173 | type=int, | ||
| 174 | default=1, | ||
| 175 | help="Number of random seed sample batches to generate per checkpoint", | ||
| 176 | ) | ||
| 177 | parser.add_argument( | ||
| 178 | "--sample_batch_size", | ||
| 179 | type=int, | ||
| 180 | default=1, | ||
| 181 | help="Number of samples to generate per batch", | ||
| 182 | ) | ||
| 183 | parser.add_argument( | ||
| 184 | "--sample_steps", | ||
| 185 | type=int, | ||
| 186 | default=50, | ||
| 187 | help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.", | ||
| 188 | ) | ||
| 189 | parser.add_argument( | ||
| 190 | "--resume_from", | ||
| 191 | type=str, | ||
| 192 | default=None, | ||
| 193 | help="Path to a directory to resume training from (ie, logs/token_name/2022-09-22T23-36-27)" | ||
| 194 | ) | ||
| 195 | parser.add_argument( | ||
| 196 | "--resume_checkpoint", | ||
| 197 | type=str, | ||
| 198 | default=None, | ||
| 199 | help="Path to a specific checkpoint to resume training from (ie, logs/token_name/2022-09-22T23-36-27/checkpoints/something.bin)." | ||
| 200 | ) | ||
| 201 | parser.add_argument( | ||
| 202 | "--config", | ||
| 203 | type=str, | ||
| 204 | default=None, | ||
| 205 | help="Path to a JSON configuration file containing arguments for invoking this script. If resume_from is given, its resume.json takes priority over this." | ||
| 206 | ) | ||
| 207 | |||
| 208 | args = parser.parse_args() | ||
| 209 | if args.resume_from is not None: | ||
| 210 | with open(f"{args.resume_from}/resume.json", 'rt') as f: | ||
| 211 | args = parser.parse_args( | ||
| 212 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
| 213 | elif args.config is not None: | ||
| 214 | with open(args.config, 'rt') as f: | ||
| 215 | args = parser.parse_args( | ||
| 216 | namespace=argparse.Namespace(**json.load(f))) | ||
| 217 | |||
| 218 | env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | ||
| 219 | if env_local_rank != -1 and env_local_rank != args.local_rank: | ||
| 220 | args.local_rank = env_local_rank | ||
| 221 | |||
| 222 | if args.train_data_dir is None: | ||
| 223 | raise ValueError("You must specify --train_data_dir") | ||
| 224 | |||
| 225 | if args.pretrained_model_name_or_path is None: | ||
| 226 | raise ValueError("You must specify --pretrained_model_name_or_path") | ||
| 227 | |||
| 228 | if args.placeholder_token is None: | ||
| 229 | raise ValueError("You must specify --placeholder_token") | ||
| 230 | |||
| 231 | if args.initializer_token is None: | ||
| 232 | raise ValueError("You must specify --initializer_token") | ||
| 233 | |||
| 234 | if args.output_dir is None: | ||
| 235 | raise ValueError("You must specify --output_dir") | ||
| 236 | |||
| 237 | return args | ||
| 238 | |||
| 239 | |||
| 240 | def freeze_params(params): | ||
| 241 | for param in params: | ||
| 242 | param.requires_grad = False | ||
| 243 | |||
| 244 | |||
| 245 | def save_resume_file(basepath, args, extra={}): | ||
| 246 | info = {"args": vars(args)} | ||
| 247 | info["args"].update(extra) | ||
| 248 | with open(f"{basepath}/resume.json", "w") as f: | ||
| 249 | json.dump(info, f, indent=4) | ||
| 250 | |||
| 251 | |||
| 252 | def make_grid(images, rows, cols): | ||
| 253 | w, h = images[0].size | ||
| 254 | grid = Image.new('RGB', size=(cols*w, rows*h)) | ||
| 255 | for i, image in enumerate(images): | ||
| 256 | grid.paste(image, box=(i % cols*w, i//cols*h)) | ||
| 257 | return grid | ||
| 258 | |||
| 259 | |||
| 260 | class Checkpointer: | ||
| 261 | def __init__( | ||
| 262 | self, | ||
| 263 | datamodule, | ||
| 264 | accelerator, | ||
| 265 | vae, | ||
| 266 | unet, | ||
| 267 | tokenizer, | ||
| 268 | placeholder_token, | ||
| 269 | placeholder_token_id, | ||
| 270 | output_dir, | ||
| 271 | sample_image_size, | ||
| 272 | random_sample_batches, | ||
| 273 | sample_batch_size, | ||
| 274 | stable_sample_batches, | ||
| 275 | seed | ||
| 276 | ): | ||
| 277 | self.datamodule = datamodule | ||
| 278 | self.accelerator = accelerator | ||
| 279 | self.vae = vae | ||
| 280 | self.unet = unet | ||
| 281 | self.tokenizer = tokenizer | ||
| 282 | self.placeholder_token = placeholder_token | ||
| 283 | self.placeholder_token_id = placeholder_token_id | ||
| 284 | self.output_dir = output_dir | ||
| 285 | self.sample_image_size = sample_image_size | ||
| 286 | self.seed = seed | ||
| 287 | self.random_sample_batches = random_sample_batches | ||
| 288 | self.sample_batch_size = sample_batch_size | ||
| 289 | self.stable_sample_batches = stable_sample_batches | ||
| 290 | |||
| 291 | @torch.no_grad() | ||
| 292 | def checkpoint(self, step, text_encoder, save_samples=True, path=None): | ||
| 293 | print("Saving checkpoint for step %d..." % step) | ||
| 294 | with self.accelerator.autocast(): | ||
| 295 | if path is None: | ||
| 296 | checkpoints_path = f"{self.output_dir}/checkpoints" | ||
| 297 | os.makedirs(checkpoints_path, exist_ok=True) | ||
| 298 | |||
| 299 | unwrapped = self.accelerator.unwrap_model(text_encoder) | ||
| 300 | |||
| 301 | # Save a checkpoint | ||
| 302 | learned_embeds = unwrapped.get_input_embeddings().weight[self.placeholder_token_id] | ||
| 303 | learned_embeds_dict = {self.placeholder_token: learned_embeds.detach().cpu()} | ||
| 304 | |||
| 305 | filename = f"%s_%d.bin" % (slugify(self.placeholder_token), step) | ||
| 306 | if path is not None: | ||
| 307 | torch.save(learned_embeds_dict, path) | ||
| 308 | else: | ||
| 309 | torch.save(learned_embeds_dict, | ||
| 310 | f"{checkpoints_path}/{filename}") | ||
| 311 | torch.save(learned_embeds_dict, f"{checkpoints_path}/last.bin") | ||
| 312 | del unwrapped | ||
| 313 | del learned_embeds | ||
| 314 | |||
| 315 | @torch.no_grad() | ||
| 316 | def save_samples(self, mode, step, text_encoder, height, width, guidance_scale, eta, num_inference_steps): | ||
| 317 | samples_path = f"{self.output_dir}/samples/{mode}" | ||
| 318 | os.makedirs(samples_path, exist_ok=True) | ||
| 319 | checker = NoCheck() | ||
| 320 | |||
| 321 | unwrapped = self.accelerator.unwrap_model(text_encoder) | ||
| 322 | # Save a sample image | ||
| 323 | pipeline = StableDiffusionPipeline( | ||
| 324 | text_encoder=unwrapped, | ||
| 325 | vae=self.vae, | ||
| 326 | unet=self.unet, | ||
| 327 | tokenizer=self.tokenizer, | ||
| 328 | scheduler=LMSDiscreteScheduler( | ||
| 329 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
| 330 | ), | ||
| 331 | safety_checker=NoCheck(), | ||
| 332 | feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"), | ||
| 333 | ).to(self.accelerator.device) | ||
| 334 | pipeline.enable_attention_slicing() | ||
| 335 | |||
| 336 | data = { | ||
| 337 | "training": self.datamodule.train_dataloader(), | ||
| 338 | "validation": self.datamodule.val_dataloader(), | ||
| 339 | }[mode] | ||
| 340 | |||
| 341 | if mode == "validation" and self.stable_sample_batches > 0: | ||
| 342 | stable_latents = torch.randn( | ||
| 343 | (self.sample_batch_size, pipeline.unet.in_channels, height // 8, width // 8), | ||
| 344 | device=pipeline.device, | ||
| 345 | generator=torch.Generator(device=pipeline.device).manual_seed(self.seed), | ||
| 346 | ) | ||
| 347 | |||
| 348 | all_samples = [] | ||
| 349 | filename = f"stable_step_%d.png" % (step) | ||
| 350 | |||
| 351 | # Generate and save stable samples | ||
| 352 | for i in range(0, self.stable_sample_batches): | ||
| 353 | prompt = [batch["prompt"] for i, batch in enumerate(data) if i < self.sample_batch_size] | ||
| 354 | samples = pipeline( | ||
| 355 | prompt=prompt, | ||
| 356 | height=self.sample_image_size, | ||
| 357 | latents=stable_latents, | ||
| 358 | width=self.sample_image_size, | ||
| 359 | guidance_scale=guidance_scale, | ||
| 360 | eta=eta, | ||
| 361 | num_inference_steps=num_inference_steps, | ||
| 362 | output_type='pil' | ||
| 363 | )["sample"] | ||
| 364 | |||
| 365 | all_samples += samples | ||
| 366 | del samples | ||
| 367 | |||
| 368 | image_grid = make_grid(all_samples, self.stable_sample_batches, self.sample_batch_size) | ||
| 369 | image_grid.save(f"{samples_path}/{filename}") | ||
| 370 | |||
| 371 | del all_samples | ||
| 372 | del image_grid | ||
| 373 | del stable_latents | ||
| 374 | |||
| 375 | all_samples = [] | ||
| 376 | filename = f"step_%d.png" % (step) | ||
| 377 | |||
| 378 | # Generate and save random samples | ||
| 379 | for i in range(0, self.random_sample_batches): | ||
| 380 | prompt = [batch["prompt"] for i, batch in enumerate(data) if i < self.sample_batch_size] | ||
| 381 | samples = pipeline( | ||
| 382 | prompt=prompt, | ||
| 383 | height=self.sample_image_size, | ||
| 384 | width=self.sample_image_size, | ||
| 385 | guidance_scale=guidance_scale, | ||
| 386 | eta=eta, | ||
| 387 | num_inference_steps=num_inference_steps, | ||
| 388 | output_type='pil' | ||
| 389 | )["sample"] | ||
| 390 | |||
| 391 | all_samples += samples | ||
| 392 | del samples | ||
| 393 | |||
| 394 | image_grid = make_grid(all_samples, self.random_sample_batches, self.sample_batch_size) | ||
| 395 | image_grid.save(f"{samples_path}/{filename}") | ||
| 396 | |||
| 397 | del all_samples | ||
| 398 | del image_grid | ||
| 399 | |||
| 400 | del checker | ||
| 401 | del unwrapped | ||
| 402 | del pipeline | ||
| 403 | torch.cuda.empty_cache() | ||
| 404 | |||
| 405 | |||
| 406 | class ImageToLatents(): | ||
| 407 | def __init__(self, vae): | ||
| 408 | self.vae = vae | ||
| 409 | self.encoded_pixel_values_cache = {} | ||
| 410 | |||
| 411 | @torch.no_grad() | ||
| 412 | def __call__(self, batch): | ||
| 413 | key = "|".join(batch["key"]) | ||
| 414 | if self.encoded_pixel_values_cache.get(key, None) is None: | ||
| 415 | self.encoded_pixel_values_cache[key] = self.vae.encode(batch["pixel_values"]).latent_dist | ||
| 416 | latents = self.encoded_pixel_values_cache[key].sample().detach().half() * 0.18215 | ||
| 417 | return latents | ||
| 418 | |||
| 419 | |||
| 420 | def main(): | ||
| 421 | args = parse_args() | ||
| 422 | |||
| 423 | global_step_offset = 0 | ||
| 424 | if args.resume_from is not None: | ||
| 425 | basepath = f"{args.resume_from}" | ||
| 426 | print("Resuming state from %s" % args.resume_from) | ||
| 427 | with open(f"{basepath}/resume.json", 'r') as f: | ||
| 428 | state = json.load(f) | ||
| 429 | global_step_offset = state["args"].get("global_step", 0) | ||
| 430 | |||
| 431 | print("We've trained %d steps so far" % global_step_offset) | ||
| 432 | else: | ||
| 433 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 434 | basepath = f"{args.output_dir}/{slugify(args.placeholder_token)}/{now}" | ||
| 435 | os.makedirs(basepath, exist_ok=True) | ||
| 436 | |||
| 437 | accelerator = Accelerator( | ||
| 438 | log_with=LoggerType.TENSORBOARD, | ||
| 439 | logging_dir=f"{basepath}", | ||
| 440 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 441 | mixed_precision=args.mixed_precision | ||
| 442 | ) | ||
| 443 | |||
| 444 | # If passed along, set the training seed now. | ||
| 445 | if args.seed is not None: | ||
| 446 | set_seed(args.seed) | ||
| 447 | |||
| 448 | # Load the tokenizer and add the placeholder token as a additional special token | ||
| 449 | if args.tokenizer_name: | ||
| 450 | tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
| 451 | elif args.pretrained_model_name_or_path: | ||
| 452 | tokenizer = CLIPTokenizer.from_pretrained( | ||
| 453 | args.pretrained_model_name_or_path + '/tokenizer' | ||
| 454 | ) | ||
| 455 | |||
| 456 | # Add the placeholder token in tokenizer | ||
| 457 | num_added_tokens = tokenizer.add_tokens(args.placeholder_token) | ||
| 458 | if num_added_tokens == 0: | ||
| 459 | raise ValueError( | ||
| 460 | f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" | ||
| 461 | " `placeholder_token` that is not already in the tokenizer." | ||
| 462 | ) | ||
| 463 | |||
| 464 | # Convert the initializer_token, placeholder_token to ids | ||
| 465 | initializer_token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) | ||
| 466 | # Check if initializer_token is a single token or a sequence of tokens | ||
| 467 | if args.vectors_per_token % len(initializer_token_ids) != 0: | ||
| 468 | raise ValueError( | ||
| 469 | f"vectors_per_token ({args.vectors_per_token}) must be divisible by initializer token ({len(initializer_token_ids)}).") | ||
| 470 | |||
| 471 | initializer_token_ids = torch.tensor(initializer_token_ids) | ||
| 472 | placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) | ||
| 473 | |||
| 474 | # Load models and create wrapper for stable diffusion | ||
| 475 | text_encoder = CLIPTextModel.from_pretrained( | ||
| 476 | args.pretrained_model_name_or_path + '/text_encoder', | ||
| 477 | ) | ||
| 478 | vae = AutoencoderKL.from_pretrained( | ||
| 479 | args.pretrained_model_name_or_path + '/vae', | ||
| 480 | ) | ||
| 481 | unet = UNet2DConditionModel.from_pretrained( | ||
| 482 | args.pretrained_model_name_or_path + '/unet', | ||
| 483 | ) | ||
| 484 | |||
| 485 | slice_size = unet.config.attention_head_dim // 2 | ||
| 486 | unet.set_attention_slice(slice_size) | ||
| 487 | |||
| 488 | # Resize the token embeddings as we are adding new special tokens to the tokenizer | ||
| 489 | text_encoder.resize_token_embeddings(len(tokenizer)) | ||
| 490 | |||
| 491 | # Initialise the newly added placeholder token with the embeddings of the initializer token | ||
| 492 | token_embeds = text_encoder.get_input_embeddings().weight.data | ||
| 493 | |||
| 494 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | ||
| 495 | |||
| 496 | if args.resume_checkpoint is not None: | ||
| 497 | token_embeds[placeholder_token_id] = torch.load(args.resume_checkpoint)[ | ||
| 498 | args.placeholder_token] | ||
| 499 | else: | ||
| 500 | token_embeds[placeholder_token_id] = initializer_token_embeddings | ||
| 501 | |||
| 502 | # Freeze vae and unet | ||
| 503 | freeze_params(vae.parameters()) | ||
| 504 | freeze_params(unet.parameters()) | ||
| 505 | # Freeze all parameters except for the token embeddings in text encoder | ||
| 506 | params_to_freeze = itertools.chain( | ||
| 507 | text_encoder.text_model.encoder.parameters(), | ||
| 508 | text_encoder.text_model.final_layer_norm.parameters(), | ||
| 509 | text_encoder.text_model.embeddings.position_embedding.parameters(), | ||
| 510 | ) | ||
| 511 | freeze_params(params_to_freeze) | ||
| 512 | |||
| 513 | if args.scale_lr: | ||
| 514 | args.learning_rate = ( | ||
| 515 | args.learning_rate * args.gradient_accumulation_steps * | ||
| 516 | args.train_batch_size * accelerator.num_processes | ||
| 517 | ) | ||
| 518 | |||
| 519 | # Initialize the optimizer | ||
| 520 | optimizer = torch.optim.AdamW( | ||
| 521 | text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings | ||
| 522 | lr=args.learning_rate, | ||
| 523 | betas=(args.adam_beta1, args.adam_beta2), | ||
| 524 | weight_decay=args.adam_weight_decay, | ||
| 525 | eps=args.adam_epsilon, | ||
| 526 | ) | ||
| 527 | |||
| 528 | # TODO (patil-suraj): laod scheduler using args | ||
| 529 | noise_scheduler = DDPMScheduler( | ||
| 530 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, tensor_format="pt" | ||
| 531 | ) | ||
| 532 | |||
| 533 | datamodule = CSVDataModule( | ||
| 534 | data_root=args.train_data_dir, batch_size=args.train_batch_size, tokenizer=tokenizer, | ||
| 535 | size=args.resolution, placeholder_token=args.placeholder_token, repeats=args.repeats, | ||
| 536 | center_crop=args.center_crop) | ||
| 537 | |||
| 538 | datamodule.prepare_data() | ||
| 539 | datamodule.setup() | ||
| 540 | |||
| 541 | train_dataloader = datamodule.train_dataloader() | ||
| 542 | val_dataloader = datamodule.val_dataloader() | ||
| 543 | |||
| 544 | checkpointer = Checkpointer( | ||
| 545 | datamodule=datamodule, | ||
| 546 | accelerator=accelerator, | ||
| 547 | vae=vae, | ||
| 548 | unet=unet, | ||
| 549 | tokenizer=tokenizer, | ||
| 550 | placeholder_token=args.placeholder_token, | ||
| 551 | placeholder_token_id=placeholder_token_id, | ||
| 552 | output_dir=basepath, | ||
| 553 | sample_image_size=args.sample_image_size, | ||
| 554 | sample_batch_size=args.sample_batch_size, | ||
| 555 | random_sample_batches=args.random_sample_batches, | ||
| 556 | stable_sample_batches=args.stable_sample_batches, | ||
| 557 | seed=args.seed | ||
| 558 | ) | ||
| 559 | |||
| 560 | # Scheduler and math around the number of training steps. | ||
| 561 | overrode_max_train_steps = False | ||
| 562 | num_update_steps_per_epoch = math.ceil( | ||
| 563 | (len(train_dataloader) + len(val_dataloader)) / args.gradient_accumulation_steps) | ||
| 564 | if args.max_train_steps is None: | ||
| 565 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 566 | overrode_max_train_steps = True | ||
| 567 | |||
| 568 | lr_scheduler = get_scheduler( | ||
| 569 | args.lr_scheduler, | ||
| 570 | optimizer=optimizer, | ||
| 571 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | ||
| 572 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
| 573 | ) | ||
| 574 | |||
| 575 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 576 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
| 577 | ) | ||
| 578 | |||
| 579 | # Move vae and unet to device | ||
| 580 | vae.to(accelerator.device) | ||
| 581 | unet.to(accelerator.device) | ||
| 582 | |||
| 583 | # Keep vae and unet in eval mode as we don't train these | ||
| 584 | vae.eval() | ||
| 585 | unet.eval() | ||
| 586 | |||
| 587 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
| 588 | num_update_steps_per_epoch = math.ceil( | ||
| 589 | (len(train_dataloader) + len(val_dataloader)) / args.gradient_accumulation_steps) | ||
| 590 | if overrode_max_train_steps: | ||
| 591 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 592 | # Afterwards we recalculate our number of training epochs | ||
| 593 | args.num_train_epochs = math.ceil( | ||
| 594 | args.max_train_steps / num_update_steps_per_epoch) | ||
| 595 | |||
| 596 | # We need to initialize the trackers we use, and also store our configuration. | ||
| 597 | # The trackers initializes automatically on the main process. | ||
| 598 | if accelerator.is_main_process: | ||
| 599 | accelerator.init_trackers("textual_inversion", config=vars(args)) | ||
| 600 | |||
| 601 | # Train! | ||
| 602 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
| 603 | |||
| 604 | logger.info("***** Running training *****") | ||
| 605 | logger.info(f" Num Epochs = {args.num_train_epochs}") | ||
| 606 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
| 607 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
| 608 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
| 609 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
| 610 | # Only show the progress bar once on each machine. | ||
| 611 | |||
| 612 | global_step = 0 | ||
| 613 | min_val_loss = np.inf | ||
| 614 | |||
| 615 | imageToLatents = ImageToLatents(vae) | ||
| 616 | |||
| 617 | checkpointer.save_samples( | ||
| 618 | "validation", | ||
| 619 | 0, | ||
| 620 | text_encoder, | ||
| 621 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
| 622 | |||
| 623 | progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) | ||
| 624 | progress_bar.set_description("Global steps") | ||
| 625 | |||
| 626 | local_progress_bar = tqdm(range(num_update_steps_per_epoch), disable=not accelerator.is_local_main_process) | ||
| 627 | local_progress_bar.set_description("Steps") | ||
| 628 | |||
| 629 | try: | ||
| 630 | for epoch in range(args.num_train_epochs): | ||
| 631 | local_progress_bar.reset() | ||
| 632 | |||
| 633 | text_encoder.train() | ||
| 634 | train_loss = 0.0 | ||
| 635 | |||
| 636 | for step, batch in enumerate(train_dataloader): | ||
| 637 | with accelerator.accumulate(text_encoder): | ||
| 638 | with accelerator.autocast(): | ||
| 639 | # Convert images to latent space | ||
| 640 | latents = imageToLatents(batch) | ||
| 641 | |||
| 642 | # Sample noise that we'll add to the latents | ||
| 643 | noise = torch.randn(latents.shape).to(latents.device) | ||
| 644 | bsz = latents.shape[0] | ||
| 645 | # Sample a random timestep for each image | ||
| 646 | timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, | ||
| 647 | (bsz,), device=latents.device).long() | ||
| 648 | |||
| 649 | # Add noise to the latents according to the noise magnitude at each timestep | ||
| 650 | # (this is the forward diffusion process) | ||
| 651 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 652 | |||
| 653 | # Get the text embedding for conditioning | ||
| 654 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
| 655 | |||
| 656 | # Predict the noise residual | ||
| 657 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 658 | |||
| 659 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
| 660 | |||
| 661 | accelerator.backward(loss) | ||
| 662 | |||
| 663 | # Zero out the gradients for all token embeddings except the newly added | ||
| 664 | # embeddings for the concept, as we only want to optimize the concept embeddings | ||
| 665 | if accelerator.num_processes > 1: | ||
| 666 | grads = text_encoder.module.get_input_embeddings().weight.grad | ||
| 667 | else: | ||
| 668 | grads = text_encoder.get_input_embeddings().weight.grad | ||
| 669 | # Get the index for tokens that we want to zero the grads for | ||
| 670 | index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id | ||
| 671 | grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0) | ||
| 672 | |||
| 673 | optimizer.step() | ||
| 674 | if not accelerator.optimizer_step_was_skipped: | ||
| 675 | lr_scheduler.step() | ||
| 676 | optimizer.zero_grad() | ||
| 677 | |||
| 678 | loss = loss.detach().item() | ||
| 679 | train_loss += loss | ||
| 680 | |||
| 681 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
| 682 | if accelerator.sync_gradients: | ||
| 683 | progress_bar.update(1) | ||
| 684 | local_progress_bar.update(1) | ||
| 685 | global_step += 1 | ||
| 686 | |||
| 687 | if global_step % args.checkpoint_frequency == 0 and global_step > 0 and accelerator.is_main_process: | ||
| 688 | checkpointer.checkpoint(global_step + global_step_offset, text_encoder) | ||
| 689 | save_resume_file(basepath, args, { | ||
| 690 | "global_step": global_step + global_step_offset, | ||
| 691 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
| 692 | }) | ||
| 693 | checkpointer.save_samples( | ||
| 694 | "training", | ||
| 695 | global_step + global_step_offset, | ||
| 696 | text_encoder, | ||
| 697 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
| 698 | |||
| 699 | logs = {"mode": "training", "loss": loss, "lr": lr_scheduler.get_last_lr()[0]} | ||
| 700 | local_progress_bar.set_postfix(**logs) | ||
| 701 | |||
| 702 | if global_step >= args.max_train_steps: | ||
| 703 | break | ||
| 704 | |||
| 705 | train_loss /= len(train_dataloader) | ||
| 706 | |||
| 707 | text_encoder.eval() | ||
| 708 | val_loss = 0.0 | ||
| 709 | |||
| 710 | for step, batch in enumerate(val_dataloader): | ||
| 711 | with torch.no_grad(), accelerator.autocast(): | ||
| 712 | latents = imageToLatents(batch) | ||
| 713 | |||
| 714 | noise = torch.randn(latents.shape).to(latents.device) | ||
| 715 | bsz = latents.shape[0] | ||
| 716 | timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, | ||
| 717 | (bsz,), device=latents.device).long() | ||
| 718 | |||
| 719 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | ||
| 720 | |||
| 721 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] | ||
| 722 | |||
| 723 | noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | ||
| 724 | |||
| 725 | noise_pred, noise = accelerator.gather_for_metrics((noise_pred, noise)) | ||
| 726 | |||
| 727 | loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | ||
| 728 | |||
| 729 | loss = loss.detach().item() | ||
| 730 | val_loss += loss | ||
| 731 | |||
| 732 | if accelerator.sync_gradients: | ||
| 733 | progress_bar.update(1) | ||
| 734 | local_progress_bar.update(1) | ||
| 735 | |||
| 736 | logs = {"mode": "validation", "loss": loss} | ||
| 737 | local_progress_bar.set_postfix(**logs) | ||
| 738 | |||
| 739 | val_loss /= len(val_dataloader) | ||
| 740 | |||
| 741 | accelerator.log({"train/loss": train_loss, "val/loss": val_loss}, step=global_step) | ||
| 742 | |||
| 743 | if min_val_loss > val_loss: | ||
| 744 | accelerator.print(f"Validation loss reached new minimum: {min_val_loss:.2e} -> {val_loss:.2e}") | ||
| 745 | min_val_loss = val_loss | ||
| 746 | |||
| 747 | checkpointer.save_samples( | ||
| 748 | "validation", | ||
| 749 | global_step + global_step_offset, | ||
| 750 | text_encoder, | ||
| 751 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | ||
| 752 | |||
| 753 | accelerator.wait_for_everyone() | ||
| 754 | |||
| 755 | # Create the pipeline using using the trained modules and save it. | ||
| 756 | if accelerator.is_main_process: | ||
| 757 | print("Finished! Saving final checkpoint and resume state.") | ||
| 758 | checkpointer.checkpoint( | ||
| 759 | global_step + global_step_offset, | ||
| 760 | text_encoder, | ||
| 761 | path=f"{basepath}/learned_embeds.bin" | ||
| 762 | ) | ||
| 763 | |||
| 764 | save_resume_file(basepath, args, { | ||
| 765 | "global_step": global_step + global_step_offset, | ||
| 766 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
| 767 | }) | ||
| 768 | |||
| 769 | accelerator.end_training() | ||
| 770 | |||
| 771 | except KeyboardInterrupt: | ||
| 772 | if accelerator.is_main_process: | ||
| 773 | print("Interrupted, saving checkpoint and resume state...") | ||
| 774 | checkpointer.checkpoint(global_step + global_step_offset, text_encoder) | ||
| 775 | save_resume_file(basepath, args, { | ||
| 776 | "global_step": global_step + global_step_offset, | ||
| 777 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
| 778 | }) | ||
| 779 | accelerator.end_training() | ||
| 780 | quit() | ||
| 781 | |||
| 782 | |||
| 783 | if __name__ == "__main__": | ||
| 784 | main() | ||
