diff options
| author | Volpeon <git@volpeon.ink> | 2023-04-15 13:31:24 +0200 | 
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2023-04-15 13:31:24 +0200 | 
| commit | d488f66c78e444d03c4ef8a957b82f8b239379d0 (patch) | |
| tree | 864b2fe8d03b0cdfc3437622a0dcd5a1ede60e16 /models | |
| parent | TI via LoRA (diff) | |
| download | textual-inversion-diff-d488f66c78e444d03c4ef8a957b82f8b239379d0.tar.gz textual-inversion-diff-d488f66c78e444d03c4ef8a957b82f8b239379d0.tar.bz2 textual-inversion-diff-d488f66c78e444d03c4ef8a957b82f8b239379d0.zip | |
Fix
Diffstat (limited to 'models')
| -rw-r--r-- | models/clip/embeddings.py | 2 | ||||
| -rw-r--r-- | models/lora.py | 8 | 
2 files changed, 5 insertions, 5 deletions
| diff --git a/models/clip/embeddings.py b/models/clip/embeddings.py index 60c1b20..840f8ae 100644 --- a/models/clip/embeddings.py +++ b/models/clip/embeddings.py | |||
| @@ -2,7 +2,6 @@ from typing import Union, Optional | |||
| 2 | from pathlib import Path | 2 | from pathlib import Path | 
| 3 | 3 | ||
| 4 | import torch | 4 | import torch | 
| 5 | import torch.nn as nn | ||
| 6 | 5 | ||
| 7 | from safetensors import safe_open | 6 | from safetensors import safe_open | 
| 8 | from safetensors.torch import save_file | 7 | from safetensors.torch import save_file | 
| @@ -64,6 +63,7 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 64 | 63 | ||
| 65 | token_ids = torch.tensor(token_ids, dtype=torch.long) | 64 | token_ids = torch.tensor(token_ids, dtype=torch.long) | 
| 66 | 65 | ||
| 66 | self.token_embedding.mark_trainable(token_ids) | ||
| 67 | self.token_embedding.weight.data[token_ids] = initializer | 67 | self.token_embedding.weight.data[token_ids] = initializer | 
| 68 | 68 | ||
| 69 | def load_embed(self, input_ids: list[int], filename: Path): | 69 | def load_embed(self, input_ids: list[int], filename: Path): | 
| diff --git a/models/lora.py b/models/lora.py index c0f74a6..98d4d2c 100644 --- a/models/lora.py +++ b/models/lora.py | |||
| @@ -83,11 +83,11 @@ class LoraEmbedding(nn.Embedding, LoraLayer): | |||
| 83 | if new_ids.shape[0] == 0: | 83 | if new_ids.shape[0] == 0: | 
| 84 | return | 84 | return | 
| 85 | 85 | ||
| 86 | n = self.trainable_ids.shape[0] | 86 | n1 = self.lora_A.shape[1] | 
| 87 | self.trainable_ids[new_ids] = torch.arange(n, n + new_ids.shape[0]) | 87 | n2 = n1 + new_ids.shape[0] | 
| 88 | self.trainable_ids[new_ids] = torch.arange(n1, n2) | ||
| 88 | 89 | ||
| 89 | lora_A = nn.Parameter(self.weight.new_zeros((self.trainable_ids.shape[0], 0))) | 90 | lora_A = nn.Parameter(self.weight.new_zeros((self.r, n2))) | 
| 90 | lora_A.data[:n] = self.lora_A.data | ||
| 91 | self.lora_A = lora_A | 91 | self.lora_A = lora_A | 
| 92 | 92 | ||
| 93 | def reset_parameters(self): | 93 | def reset_parameters(self): | 
