diff options
author | Volpeon <git@volpeon.ink> | 2023-04-11 22:36:05 +0200 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2023-04-11 22:36:05 +0200 |
commit | f39286fa5c5840b67dadf8e85f5f5d7ff1414aab (patch) | |
tree | b56956444af8439404bb8eb9b82508ac5e2194b9 /models | |
parent | Store sample images in Tensorboard as well (diff) | |
download | textual-inversion-diff-f39286fa5c5840b67dadf8e85f5f5d7ff1414aab.tar.gz textual-inversion-diff-f39286fa5c5840b67dadf8e85f5f5d7ff1414aab.tar.bz2 textual-inversion-diff-f39286fa5c5840b67dadf8e85f5f5d7ff1414aab.zip |
Experimental convnext discriminator support
Diffstat (limited to 'models')
-rw-r--r-- | models/convnext/discriminator.py | 35 |
1 files changed, 35 insertions, 0 deletions
diff --git a/models/convnext/discriminator.py b/models/convnext/discriminator.py new file mode 100644 index 0000000..7dbbe3a --- /dev/null +++ b/models/convnext/discriminator.py | |||
@@ -0,0 +1,35 @@ | |||
1 | import torch | ||
2 | from timm.models import ConvNeXt | ||
3 | from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | ||
4 | |||
5 | from torch.nn import functional as F | ||
6 | |||
7 | |||
8 | class ConvNeXtDiscriminator(): | ||
9 | def __init__(self, model: ConvNeXt, input_size: int) -> None: | ||
10 | self.net = model | ||
11 | |||
12 | self.input_size = input_size | ||
13 | |||
14 | self.img_mean = torch.tensor(IMAGENET_DEFAULT_MEAN).view(1, -1, 1, 1) | ||
15 | self.img_std = torch.tensor(IMAGENET_DEFAULT_STD).view(1, -1, 1, 1) | ||
16 | |||
17 | def get_score(self, img): | ||
18 | img_mean = self.img_mean.to(device=img.device, dtype=img.dtype) | ||
19 | img_std = self.img_std.to(device=img.device, dtype=img.dtype) | ||
20 | |||
21 | img = ((img+1.)/2.).sub(img_mean).div(img_std) | ||
22 | |||
23 | img = F.interpolate(img, size=(self.input_size, self.input_size), mode='bicubic', align_corners=True) | ||
24 | pred = self.net(img) | ||
25 | return torch.softmax(pred, dim=-1)[:, 1] | ||
26 | |||
27 | def get_all(self, img): | ||
28 | img_mean = self.img_mean.to(device=img.device, dtype=img.dtype) | ||
29 | img_std = self.img_std.to(device=img.device, dtype=img.dtype) | ||
30 | |||
31 | img = ((img + 1.) / 2.).sub(img_mean).div(img_std) | ||
32 | |||
33 | img = F.interpolate(img, size=(self.input_size, self.input_size), mode='bicubic', align_corners=True) | ||
34 | pred = self.net(img) | ||
35 | return pred | ||