summaryrefslogtreecommitdiffstats
path: root/pipelines/stable_diffusion
diff options
context:
space:
mode:
authorVolpeon <git@volpeon.ink>2022-10-01 16:53:19 +0200
committerVolpeon <git@volpeon.ink>2022-10-01 16:53:19 +0200
commit6720c99f7082dc855059ad4afd6b3cb45b62bc1f (patch)
treed27f69880472df0cd6f63ea42bbf7a789ec5d0b7 /pipelines/stable_diffusion
parentMade inference script interactive (diff)
downloadtextual-inversion-diff-6720c99f7082dc855059ad4afd6b3cb45b62bc1f.tar.gz
textual-inversion-diff-6720c99f7082dc855059ad4afd6b3cb45b62bc1f.tar.bz2
textual-inversion-diff-6720c99f7082dc855059ad4afd6b3cb45b62bc1f.zip
Fix seed, better progress bar, fix euler_a for batch size > 1
Diffstat (limited to 'pipelines/stable_diffusion')
-rw-r--r--pipelines/stable_diffusion/clip_guided_stable_diffusion.py4
1 files changed, 2 insertions, 2 deletions
diff --git a/pipelines/stable_diffusion/clip_guided_stable_diffusion.py b/pipelines/stable_diffusion/clip_guided_stable_diffusion.py
index ddf7ce1..eff74b5 100644
--- a/pipelines/stable_diffusion/clip_guided_stable_diffusion.py
+++ b/pipelines/stable_diffusion/clip_guided_stable_diffusion.py
@@ -254,10 +254,10 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline):
254 noise_pred = None 254 noise_pred = None
255 if isinstance(self.scheduler, EulerAScheduler): 255 if isinstance(self.scheduler, EulerAScheduler):
256 sigma = t.reshape(1) 256 sigma = t.reshape(1)
257 sigma_in = torch.cat([sigma] * 2) 257 sigma_in = torch.cat([sigma] * latent_model_input.shape[0])
258 # noise_pred = model(latent_model_input,sigma_in,uncond_embeddings, text_embeddings,guidance_scale) 258 # noise_pred = model(latent_model_input,sigma_in,uncond_embeddings, text_embeddings,guidance_scale)
259 noise_pred = CFGDenoiserForward(self.unet, latent_model_input, sigma_in, 259 noise_pred = CFGDenoiserForward(self.unet, latent_model_input, sigma_in,
260 text_embeddings, guidance_scale, DSsigmas=self.scheduler.DSsigmas) 260 text_embeddings, guidance_scale, quantize=True, DSsigmas=self.scheduler.DSsigmas)
261 # noise_pred = self.unet(latent_model_input, sigma_in, encoder_hidden_states=text_embeddings).sample 261 # noise_pred = self.unet(latent_model_input, sigma_in, encoder_hidden_states=text_embeddings).sample
262 else: 262 else:
263 # predict the noise residual 263 # predict the noise residual