summaryrefslogtreecommitdiffstats
path: root/pipelines
diff options
context:
space:
mode:
authorVolpeon <git@volpeon.ink>2023-03-04 09:58:36 +0100
committerVolpeon <git@volpeon.ink>2023-03-04 09:58:36 +0100
commit1139541b553d398dc080ddfd0d13045669853455 (patch)
tree8ac520e5ff196379f0ad33cbfe2165c5ad4a3440 /pipelines
parentPipeline: Perlin noise for init image (diff)
downloadtextual-inversion-diff-1139541b553d398dc080ddfd0d13045669853455.tar.gz
textual-inversion-diff-1139541b553d398dc080ddfd0d13045669853455.tar.bz2
textual-inversion-diff-1139541b553d398dc080ddfd0d13045669853455.zip
Update
Diffstat (limited to 'pipelines')
-rw-r--r--pipelines/stable_diffusion/vlpn_stable_diffusion.py11
1 files changed, 2 insertions, 9 deletions
diff --git a/pipelines/stable_diffusion/vlpn_stable_diffusion.py b/pipelines/stable_diffusion/vlpn_stable_diffusion.py
index a6b31d8..f02dd72 100644
--- a/pipelines/stable_diffusion/vlpn_stable_diffusion.py
+++ b/pipelines/stable_diffusion/vlpn_stable_diffusion.py
@@ -307,17 +307,10 @@ class VlpnStableDiffusion(DiffusionPipeline):
307 return timesteps, num_inference_steps - t_start 307 return timesteps, num_inference_steps - t_start
308 308
309 def prepare_image(self, batch_size, width, height, dtype, device, generator=None): 309 def prepare_image(self, batch_size, width, height, dtype, device, generator=None):
310 max = 0.4
311 offset = max * (2 * torch.rand(
312 (batch_size, 1, 1, 1),
313 dtype=dtype,
314 device=device,
315 generator=generator
316 ) - 1)
317 noise = perlin_noise( 310 noise = perlin_noise(
318 batch_size, width, height, res=3, octaves=3, generator=generator, dtype=dtype, device=device 311 batch_size, width, height, res=1, octaves=4, generator=generator, dtype=dtype, device=device
319 ).expand(batch_size, 3, width, height) 312 ).expand(batch_size, 3, width, height)
320 return ((1 + max) * noise + max * offset).clamp(-1, 1) 313 return (1.4 * noise).clamp(-1, 1)
321 314
322 def prepare_latents(self, init_image, timestep, batch_size, dtype, device, generator=None): 315 def prepare_latents(self, init_image, timestep, batch_size, dtype, device, generator=None):
323 init_image = init_image.to(device=device, dtype=dtype) 316 init_image = init_image.to(device=device, dtype=dtype)