diff options
| author | Volpeon <git@volpeon.ink> | 2022-11-01 16:19:01 +0100 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2022-11-01 16:19:01 +0100 |
| commit | b2c3389e9c6375d9081625e75a99de98395f8e77 (patch) | |
| tree | d230b417314960e8705abd2eeaa3b55d9b70c754 /schedulers | |
| parent | Fix (diff) | |
| download | textual-inversion-diff-b2c3389e9c6375d9081625e75a99de98395f8e77.tar.gz textual-inversion-diff-b2c3389e9c6375d9081625e75a99de98395f8e77.tar.bz2 textual-inversion-diff-b2c3389e9c6375d9081625e75a99de98395f8e77.zip | |
Update
Diffstat (limited to 'schedulers')
| -rw-r--r-- | schedulers/scheduling_euler_ancestral_discrete.py | 162 |
1 files changed, 112 insertions, 50 deletions
diff --git a/schedulers/scheduling_euler_ancestral_discrete.py b/schedulers/scheduling_euler_ancestral_discrete.py index 828e0dd..cef50fe 100644 --- a/schedulers/scheduling_euler_ancestral_discrete.py +++ b/schedulers/scheduling_euler_ancestral_discrete.py | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | # Copyright 2022 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved. | 1 | # Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved. |
| 2 | # | 2 | # |
| 3 | # Licensed under the Apache License, Version 2.0 (the "License"); | 3 | # Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | # you may not use this file except in compliance with the License. | 4 | # you may not use this file except in compliance with the License. |
| @@ -12,20 +12,42 @@ | |||
| 12 | # See the License for the specific language governing permissions and | 12 | # See the License for the specific language governing permissions and |
| 13 | # limitations under the License. | 13 | # limitations under the License. |
| 14 | 14 | ||
| 15 | from dataclasses import dataclass | ||
| 15 | from typing import Optional, Tuple, Union | 16 | from typing import Optional, Tuple, Union |
| 16 | 17 | ||
| 17 | import numpy as np | 18 | import numpy as np |
| 18 | import torch | 19 | import torch |
| 19 | 20 | ||
| 20 | from diffusers.configuration_utils import ConfigMixin, register_to_config | 21 | from diffusers.configuration_utils import ConfigMixin, register_to_config |
| 21 | from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput | 22 | from diffusers.utils import BaseOutput, deprecate, logging |
| 23 | from diffusers.schedulers.scheduling_utils import SchedulerMixin | ||
| 24 | |||
| 25 | |||
| 26 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name | ||
| 27 | |||
| 28 | |||
| 29 | @dataclass | ||
| 30 | # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerAncestralDiscrete | ||
| 31 | class EulerAncestralDiscreteSchedulerOutput(BaseOutput): | ||
| 32 | """ | ||
| 33 | Output class for the scheduler's step function output. | ||
| 34 | |||
| 35 | Args: | ||
| 36 | prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | ||
| 37 | Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | ||
| 38 | denoising loop. | ||
| 39 | pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | ||
| 40 | The predicted denoised sample (x_{0}) based on the model output from the current timestep. | ||
| 41 | `pred_original_sample` can be used to preview progress or for guidance. | ||
| 42 | """ | ||
| 43 | |||
| 44 | prev_sample: torch.FloatTensor | ||
| 45 | pred_original_sample: Optional[torch.FloatTensor] = None | ||
| 22 | 46 | ||
| 23 | 47 | ||
| 24 | class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): | 48 | class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): |
| 25 | """ | 49 | """ |
| 26 | Ancestral sampling with Euler method steps. | 50 | Ancestral sampling with Euler method steps. Based on the original k-diffusion implementation by Katherine Crowson: |
| 27 | for discrete beta schedules. Based on the original k-diffusion implementation by | ||
| 28 | Katherine Crowson: | ||
| 29 | https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72 | 51 | https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72 |
| 30 | 52 | ||
| 31 | [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | 53 | [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
| @@ -42,9 +64,6 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): | |||
| 42 | `linear` or `scaled_linear`. | 64 | `linear` or `scaled_linear`. |
| 43 | trained_betas (`np.ndarray`, optional): | 65 | trained_betas (`np.ndarray`, optional): |
| 44 | option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | 66 | option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
| 45 | options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, | ||
| 46 | `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. | ||
| 47 | tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays. | ||
| 48 | 67 | ||
| 49 | """ | 68 | """ |
| 50 | 69 | ||
| @@ -52,8 +71,8 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): | |||
| 52 | def __init__( | 71 | def __init__( |
| 53 | self, | 72 | self, |
| 54 | num_train_timesteps: int = 1000, | 73 | num_train_timesteps: int = 1000, |
| 55 | beta_start: float = 0.00085, # sensible defaults | 74 | beta_start: float = 0.0001, |
| 56 | beta_end: float = 0.012, | 75 | beta_end: float = 0.02, |
| 57 | beta_schedule: str = "linear", | 76 | beta_schedule: str = "linear", |
| 58 | trained_betas: Optional[np.ndarray] = None, | 77 | trained_betas: Optional[np.ndarray] = None, |
| 59 | ): | 78 | ): |
| @@ -76,20 +95,20 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): | |||
| 76 | sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) | 95 | sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) |
| 77 | self.sigmas = torch.from_numpy(sigmas) | 96 | self.sigmas = torch.from_numpy(sigmas) |
| 78 | 97 | ||
| 79 | self.init_noise_sigma = None | 98 | # standard deviation of the initial noise distribution |
| 99 | self.init_noise_sigma = self.sigmas.max() | ||
| 80 | 100 | ||
| 81 | # setable values | 101 | # setable values |
| 82 | self.num_inference_steps = None | 102 | self.num_inference_steps = None |
| 83 | timesteps = np.arange(0, num_train_timesteps)[::-1].copy() | 103 | timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() |
| 84 | self.timesteps = torch.from_numpy(timesteps) | 104 | self.timesteps = torch.from_numpy(timesteps) |
| 85 | self.derivatives = [] | ||
| 86 | self.is_scale_input_called = False | 105 | self.is_scale_input_called = False |
| 87 | 106 | ||
| 88 | def scale_model_input( | 107 | def scale_model_input( |
| 89 | self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], step_index: Union[int, torch.IntTensor] | 108 | self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] |
| 90 | ) -> torch.FloatTensor: | 109 | ) -> torch.FloatTensor: |
| 91 | """ | 110 | """ |
| 92 | Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm. | 111 | Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. |
| 93 | 112 | ||
| 94 | Args: | 113 | Args: |
| 95 | sample (`torch.FloatTensor`): input sample | 114 | sample (`torch.FloatTensor`): input sample |
| @@ -98,8 +117,12 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): | |||
| 98 | Returns: | 117 | Returns: |
| 99 | `torch.FloatTensor`: scaled input sample | 118 | `torch.FloatTensor`: scaled input sample |
| 100 | """ | 119 | """ |
| 120 | if isinstance(timestep, torch.Tensor): | ||
| 121 | timestep = timestep.to(self.timesteps.device) | ||
| 122 | step_index = (self.timesteps == timestep).nonzero().item() | ||
| 101 | sigma = self.sigmas[step_index] | 123 | sigma = self.sigmas[step_index] |
| 102 | sample = sample / ((sigma**2 + 1) ** 0.5) | 124 | sample = sample / ((sigma**2 + 1) ** 0.5) |
| 125 | self.is_scale_input_called = True | ||
| 103 | return sample | 126 | return sample |
| 104 | 127 | ||
| 105 | def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | 128 | def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
| @@ -109,86 +132,125 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): | |||
| 109 | Args: | 132 | Args: |
| 110 | num_inference_steps (`int`): | 133 | num_inference_steps (`int`): |
| 111 | the number of diffusion steps used when generating samples with a pre-trained model. | 134 | the number of diffusion steps used when generating samples with a pre-trained model. |
| 135 | device (`str` or `torch.device`, optional): | ||
| 136 | the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | ||
| 112 | """ | 137 | """ |
| 113 | self.num_inference_steps = num_inference_steps | 138 | self.num_inference_steps = num_inference_steps |
| 114 | self.timesteps = np.linspace(self.num_train_timesteps - 1, 0, num_inference_steps, dtype=float) | ||
| 115 | 139 | ||
| 116 | low_idx = np.floor(self.timesteps).astype(int) | 140 | timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() |
| 117 | high_idx = np.ceil(self.timesteps).astype(int) | ||
| 118 | frac = np.mod(self.timesteps, 1.0) | ||
| 119 | sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | 141 | sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
| 120 | sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx] | 142 | sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) |
| 121 | sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) | 143 | sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) |
| 122 | self.sigmas = torch.from_numpy(sigmas) | 144 | self.sigmas = torch.from_numpy(sigmas).to(device=device) |
| 123 | self.timesteps = torch.from_numpy(self.timesteps) | 145 | self.timesteps = torch.from_numpy(timesteps).to(device=device) |
| 124 | self.init_noise_sigma = self.sigmas[0] | ||
| 125 | self.derivatives = [] | ||
| 126 | 146 | ||
| 127 | def step( | 147 | def step( |
| 128 | self, | 148 | self, |
| 129 | model_output: Union[torch.FloatTensor, np.ndarray], | 149 | model_output: torch.FloatTensor, |
| 130 | timestep: Union[float, torch.FloatTensor], | 150 | timestep: Union[float, torch.FloatTensor], |
| 131 | step_index: Union[int, torch.IntTensor], | 151 | sample: torch.FloatTensor, |
| 132 | sample: Union[torch.FloatTensor, np.ndarray], | 152 | generator: Optional[torch.Generator] = None, |
| 133 | generator: torch.Generator = None, | ||
| 134 | return_dict: bool = True, | 153 | return_dict: bool = True, |
| 135 | ) -> Union[SchedulerOutput, Tuple]: | 154 | ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]: |
| 136 | """ | 155 | """ |
| 137 | Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | 156 | Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
| 138 | process from the learned model outputs (most often the predicted noise). | 157 | process from the learned model outputs (most often the predicted noise). |
| 139 | 158 | ||
| 140 | Args: | 159 | Args: |
| 141 | model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. | 160 | model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
| 142 | timestep (`int`): current discrete timestep in the diffusion chain. | 161 | timestep (`float`): current timestep in the diffusion chain. |
| 143 | sample (`torch.FloatTensor` or `np.ndarray`): | 162 | sample (`torch.FloatTensor`): |
| 144 | current instance of sample being created by diffusion process. | 163 | current instance of sample being created by diffusion process. |
| 145 | return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | 164 | generator (`torch.Generator`, optional): Random number generator. |
| 165 | return_dict (`bool`): option for returning tuple rather than EulerAncestralDiscreteSchedulerOutput class | ||
| 146 | 166 | ||
| 147 | Returns: | 167 | Returns: |
| 148 | [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: | 168 | [`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] or `tuple`: |
| 149 | [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When | 169 | [`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] if `return_dict` is True, otherwise |
| 150 | returning a tuple, the first element is the sample tensor. | 170 | a `tuple`. When returning a tuple, the first element is the sample tensor. |
| 151 | 171 | ||
| 152 | """ | 172 | """ |
| 173 | |||
| 174 | if ( | ||
| 175 | isinstance(timestep, int) | ||
| 176 | or isinstance(timestep, torch.IntTensor) | ||
| 177 | or isinstance(timestep, torch.LongTensor) | ||
| 178 | ): | ||
| 179 | raise ValueError( | ||
| 180 | "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | ||
| 181 | " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" | ||
| 182 | " one of the `scheduler.timesteps` as a timestep.", | ||
| 183 | ) | ||
| 184 | |||
| 185 | if not self.is_scale_input_called: | ||
| 186 | logger.warn( | ||
| 187 | "The `scale_model_input` function should be called before `step` to ensure correct denoising. " | ||
| 188 | "See `StableDiffusionPipeline` for a usage example." | ||
| 189 | ) | ||
| 190 | |||
| 191 | if isinstance(timestep, torch.Tensor): | ||
| 192 | timestep = timestep.to(self.timesteps.device) | ||
| 193 | |||
| 194 | step_index = (self.timesteps == timestep).nonzero().item() | ||
| 153 | sigma = self.sigmas[step_index] | 195 | sigma = self.sigmas[step_index] |
| 154 | 196 | ||
| 155 | # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | 197 | # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise |
| 156 | pred_original_sample = sample - sigma * model_output | 198 | pred_original_sample = sample - sigma * model_output |
| 157 | sigma_from = self.sigmas[step_index] | 199 | sigma_from = self.sigmas[step_index] |
| 158 | sigma_to = self.sigmas[step_index + 1] | 200 | sigma_to = self.sigmas[step_index + 1] |
| 159 | sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5 | 201 | sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5 |
| 160 | sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 | 202 | sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5 |
| 203 | |||
| 161 | # 2. Convert to an ODE derivative | 204 | # 2. Convert to an ODE derivative |
| 162 | derivative = (sample - pred_original_sample) / sigma | 205 | derivative = (sample - pred_original_sample) / sigma |
| 163 | self.derivatives.append(derivative) | ||
| 164 | 206 | ||
| 165 | dt = sigma_down - sigma | 207 | dt = sigma_down - sigma |
| 166 | 208 | ||
| 167 | prev_sample = sample + derivative * dt | 209 | prev_sample = sample + derivative * dt |
| 168 | 210 | ||
| 169 | prev_sample = prev_sample + torch.randn( | 211 | device = model_output.device if torch.is_tensor(model_output) else "cpu" |
| 170 | prev_sample.shape, | 212 | noise = torch.randn(model_output.shape, dtype=model_output.dtype, device=device, generator=generator) |
| 171 | layout=prev_sample.layout, | 213 | prev_sample = prev_sample + noise * sigma_up |
| 172 | device=prev_sample.device, | ||
| 173 | dtype=prev_sample.dtype, | ||
| 174 | generator=generator | ||
| 175 | ) * sigma_up | ||
| 176 | 214 | ||
| 177 | if not return_dict: | 215 | if not return_dict: |
| 178 | return (prev_sample,) | 216 | return (prev_sample,) |
| 179 | 217 | ||
| 180 | return SchedulerOutput(prev_sample=prev_sample) | 218 | return EulerAncestralDiscreteSchedulerOutput( |
| 219 | prev_sample=prev_sample, pred_original_sample=pred_original_sample | ||
| 220 | ) | ||
| 181 | 221 | ||
| 182 | def add_noise( | 222 | def add_noise( |
| 183 | self, | 223 | self, |
| 184 | original_samples: torch.FloatTensor, | 224 | original_samples: torch.FloatTensor, |
| 185 | noise: torch.FloatTensor, | 225 | noise: torch.FloatTensor, |
| 186 | timesteps: torch.IntTensor, | 226 | timesteps: torch.FloatTensor, |
| 187 | ) -> torch.FloatTensor: | 227 | ) -> torch.FloatTensor: |
| 188 | # Make sure sigmas and timesteps have the same device and dtype as original_samples | 228 | # Make sure sigmas and timesteps have the same device and dtype as original_samples |
| 189 | self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | 229 | self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) |
| 190 | self.timesteps = self.timesteps.to(original_samples.device) | 230 | if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): |
| 191 | sigma = self.sigmas[timesteps].flatten() | 231 | # mps does not support float64 |
| 232 | self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | ||
| 233 | timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | ||
| 234 | else: | ||
| 235 | self.timesteps = self.timesteps.to(original_samples.device) | ||
| 236 | timesteps = timesteps.to(original_samples.device) | ||
| 237 | |||
| 238 | schedule_timesteps = self.timesteps | ||
| 239 | |||
| 240 | if isinstance(timesteps, torch.IntTensor) or isinstance(timesteps, torch.LongTensor): | ||
| 241 | deprecate( | ||
| 242 | "timesteps as indices", | ||
| 243 | "0.8.0", | ||
| 244 | "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | ||
| 245 | " `EulerAncestralDiscreteScheduler.add_noise()` will not be supported in future versions. Make sure to" | ||
| 246 | " pass values from `scheduler.timesteps` as timesteps.", | ||
| 247 | standard_warn=False, | ||
| 248 | ) | ||
| 249 | step_indices = timesteps | ||
| 250 | else: | ||
| 251 | step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | ||
| 252 | |||
| 253 | sigma = self.sigmas[step_indices].flatten() | ||
| 192 | while len(sigma.shape) < len(original_samples.shape): | 254 | while len(sigma.shape) < len(original_samples.shape): |
| 193 | sigma = sigma.unsqueeze(-1) | 255 | sigma = sigma.unsqueeze(-1) |
| 194 | 256 | ||
