diff options
| author | Volpeon <git@volpeon.ink> | 2022-12-13 09:40:34 +0100 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2022-12-13 09:40:34 +0100 |
| commit | b33ac00de283fe45edba689990dc96a5de93cd1e (patch) | |
| tree | a3106f2e482f9e4b2ab9d9ff49faf0b529278f50 /textual_inversion.py | |
| parent | Dreambooth: Support loading Textual Inversion embeddings (diff) | |
| download | textual-inversion-diff-b33ac00de283fe45edba689990dc96a5de93cd1e.tar.gz textual-inversion-diff-b33ac00de283fe45edba689990dc96a5de93cd1e.tar.bz2 textual-inversion-diff-b33ac00de283fe45edba689990dc96a5de93cd1e.zip | |
Add support for resume in Textual Inversion
Diffstat (limited to 'textual_inversion.py')
| -rw-r--r-- | textual_inversion.py | 119 |
1 files changed, 54 insertions, 65 deletions
diff --git a/textual_inversion.py b/textual_inversion.py index a9c3326..11babd8 100644 --- a/textual_inversion.py +++ b/textual_inversion.py | |||
| @@ -170,7 +170,7 @@ def parse_args(): | |||
| 170 | parser.add_argument( | 170 | parser.add_argument( |
| 171 | "--lr_scheduler", | 171 | "--lr_scheduler", |
| 172 | type=str, | 172 | type=str, |
| 173 | default="one_cycle", | 173 | default="constant_with_warmup", |
| 174 | help=( | 174 | help=( |
| 175 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | 175 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
| 176 | ' "constant", "constant_with_warmup", "one_cycle"]' | 176 | ' "constant", "constant_with_warmup", "one_cycle"]' |
| @@ -231,14 +231,14 @@ def parse_args(): | |||
| 231 | parser.add_argument( | 231 | parser.add_argument( |
| 232 | "--checkpoint_frequency", | 232 | "--checkpoint_frequency", |
| 233 | type=int, | 233 | type=int, |
| 234 | default=500, | 234 | default=5, |
| 235 | help="How often to save a checkpoint and sample image", | 235 | help="How often to save a checkpoint and sample image (in epochs)", |
| 236 | ) | 236 | ) |
| 237 | parser.add_argument( | 237 | parser.add_argument( |
| 238 | "--sample_frequency", | 238 | "--sample_frequency", |
| 239 | type=int, | 239 | type=int, |
| 240 | default=100, | 240 | default=1, |
| 241 | help="How often to save a checkpoint and sample image", | 241 | help="How often to save a checkpoint and sample image (in epochs)", |
| 242 | ) | 242 | ) |
| 243 | parser.add_argument( | 243 | parser.add_argument( |
| 244 | "--sample_image_size", | 244 | "--sample_image_size", |
| @@ -294,10 +294,9 @@ def parse_args(): | |||
| 294 | help="Path to a directory to resume training from (ie, logs/token_name/2022-09-22T23-36-27)" | 294 | help="Path to a directory to resume training from (ie, logs/token_name/2022-09-22T23-36-27)" |
| 295 | ) | 295 | ) |
| 296 | parser.add_argument( | 296 | parser.add_argument( |
| 297 | "--resume_checkpoint", | 297 | "--global_step", |
| 298 | type=str, | 298 | type=int, |
| 299 | default=None, | 299 | default=0, |
| 300 | help="Path to a specific checkpoint to resume training from (ie, logs/token_name/2022-09-22T23-36-27/checkpoints/something.bin)." | ||
| 301 | ) | 300 | ) |
| 302 | parser.add_argument( | 301 | parser.add_argument( |
| 303 | "--config", | 302 | "--config", |
| @@ -512,19 +511,10 @@ def main(): | |||
| 512 | if len(args.placeholder_token) != 0: | 511 | if len(args.placeholder_token) != 0: |
| 513 | instance_identifier = instance_identifier.format(args.placeholder_token[0]) | 512 | instance_identifier = instance_identifier.format(args.placeholder_token[0]) |
| 514 | 513 | ||
| 515 | global_step_offset = 0 | 514 | global_step_offset = args.global_step |
| 516 | if args.resume_from is not None: | 515 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") |
| 517 | basepath = Path(args.resume_from) | 516 | basepath = Path(args.output_dir).joinpath(slugify(instance_identifier), now) |
| 518 | print("Resuming state from %s" % args.resume_from) | 517 | basepath.mkdir(parents=True, exist_ok=True) |
| 519 | with open(basepath.joinpath("resume.json"), 'r') as f: | ||
| 520 | state = json.load(f) | ||
| 521 | global_step_offset = state["args"].get("global_step", 0) | ||
| 522 | |||
| 523 | print("We've trained %d steps so far" % global_step_offset) | ||
| 524 | else: | ||
| 525 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 526 | basepath = Path(args.output_dir).joinpath(slugify(instance_identifier), now) | ||
| 527 | basepath.mkdir(parents=True, exist_ok=True) | ||
| 528 | 518 | ||
| 529 | accelerator = Accelerator( | 519 | accelerator = Accelerator( |
| 530 | log_with=LoggerType.TENSORBOARD, | 520 | log_with=LoggerType.TENSORBOARD, |
| @@ -557,6 +547,7 @@ def main(): | |||
| 557 | set_use_memory_efficient_attention_xformers(vae, True) | 547 | set_use_memory_efficient_attention_xformers(vae, True) |
| 558 | 548 | ||
| 559 | if args.gradient_checkpointing: | 549 | if args.gradient_checkpointing: |
| 550 | unet.enable_gradient_checkpointing() | ||
| 560 | text_encoder.gradient_checkpointing_enable() | 551 | text_encoder.gradient_checkpointing_enable() |
| 561 | 552 | ||
| 562 | print(f"Adding text embeddings: {args.placeholder_token}") | 553 | print(f"Adding text embeddings: {args.placeholder_token}") |
| @@ -577,14 +568,25 @@ def main(): | |||
| 577 | 568 | ||
| 578 | # Initialise the newly added placeholder token with the embeddings of the initializer token | 569 | # Initialise the newly added placeholder token with the embeddings of the initializer token |
| 579 | token_embeds = text_encoder.get_input_embeddings().weight.data | 570 | token_embeds = text_encoder.get_input_embeddings().weight.data |
| 580 | original_token_embeds = token_embeds.detach().clone().to(accelerator.device) | ||
| 581 | 571 | ||
| 582 | if args.resume_checkpoint is not None: | 572 | if args.resume_from: |
| 583 | token_embeds[placeholder_token_id] = torch.load(args.resume_checkpoint)[args.placeholder_token] | 573 | resumepath = Path(args.resume_from).joinpath("checkpoints") |
| 584 | else: | 574 | |
| 585 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | 575 | for (token_id, token) in zip(placeholder_token_id, args.placeholder_token): |
| 586 | for (token_id, embeddings) in zip(placeholder_token_id, initializer_token_embeddings): | 576 | embedding_file = resumepath.joinpath(f"{token}_{args.global_step}_end.bin") |
| 587 | token_embeds[token_id] = embeddings | 577 | embedding_data = torch.load(embedding_file, map_location="cpu") |
| 578 | |||
| 579 | emb = next(iter(embedding_data.values())) | ||
| 580 | if len(emb.shape) == 1: | ||
| 581 | emb = emb.unsqueeze(0) | ||
| 582 | |||
| 583 | token_embeds[token_id] = emb | ||
| 584 | |||
| 585 | original_token_embeds = token_embeds.clone().to(accelerator.device) | ||
| 586 | |||
| 587 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | ||
| 588 | for (token_id, embeddings) in zip(placeholder_token_id, initializer_token_embeddings): | ||
| 589 | token_embeds[token_id] = embeddings | ||
| 588 | 590 | ||
| 589 | index_fixed_tokens = torch.arange(len(tokenizer)) | 591 | index_fixed_tokens = torch.arange(len(tokenizer)) |
| 590 | index_fixed_tokens = index_fixed_tokens[~torch.isin(index_fixed_tokens, torch.tensor(placeholder_token_id))] | 592 | index_fixed_tokens = index_fixed_tokens[~torch.isin(index_fixed_tokens, torch.tensor(placeholder_token_id))] |
| @@ -891,21 +893,16 @@ def main(): | |||
| 891 | 893 | ||
| 892 | accelerator.backward(loss) | 894 | accelerator.backward(loss) |
| 893 | 895 | ||
| 894 | # Keep the token embeddings fixed except the newly added | ||
| 895 | # embeddings for the concept, as we only want to optimize the concept embeddings | ||
| 896 | if accelerator.num_processes > 1: | ||
| 897 | token_embeds = text_encoder.module.get_input_embeddings().weight | ||
| 898 | else: | ||
| 899 | token_embeds = text_encoder.get_input_embeddings().weight | ||
| 900 | |||
| 901 | # Get the index for tokens that we want to freeze | ||
| 902 | token_embeds.data[index_fixed_tokens, :] = original_token_embeds[index_fixed_tokens, :] | ||
| 903 | |||
| 904 | optimizer.step() | 896 | optimizer.step() |
| 905 | if not accelerator.optimizer_step_was_skipped: | 897 | if not accelerator.optimizer_step_was_skipped: |
| 906 | lr_scheduler.step() | 898 | lr_scheduler.step() |
| 907 | optimizer.zero_grad(set_to_none=True) | 899 | optimizer.zero_grad(set_to_none=True) |
| 908 | 900 | ||
| 901 | # Let's make sure we don't update any embedding weights besides the newly added token | ||
| 902 | with torch.no_grad(): | ||
| 903 | text_encoder.get_input_embeddings( | ||
| 904 | ).weight[index_fixed_tokens] = original_token_embeds[index_fixed_tokens] | ||
| 905 | |||
| 909 | loss = loss.detach().item() | 906 | loss = loss.detach().item() |
| 910 | train_loss += loss | 907 | train_loss += loss |
| 911 | 908 | ||
| @@ -916,19 +913,6 @@ def main(): | |||
| 916 | 913 | ||
| 917 | global_step += 1 | 914 | global_step += 1 |
| 918 | 915 | ||
| 919 | if global_step % args.sample_frequency == 0: | ||
| 920 | sample_checkpoint = True | ||
| 921 | |||
| 922 | if global_step % args.checkpoint_frequency == 0 and global_step > 0 and accelerator.is_main_process: | ||
| 923 | local_progress_bar.clear() | ||
| 924 | global_progress_bar.clear() | ||
| 925 | |||
| 926 | checkpointer.checkpoint(global_step + global_step_offset, "training") | ||
| 927 | save_args(basepath, args, { | ||
| 928 | "global_step": global_step + global_step_offset, | ||
| 929 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
| 930 | }) | ||
| 931 | |||
| 932 | logs = {"train/loss": loss, "lr": lr_scheduler.get_last_lr()[0]} | 916 | logs = {"train/loss": loss, "lr": lr_scheduler.get_last_lr()[0]} |
| 933 | 917 | ||
| 934 | accelerator.log(logs, step=global_step) | 918 | accelerator.log(logs, step=global_step) |
| @@ -992,24 +976,30 @@ def main(): | |||
| 992 | local_progress_bar.clear() | 976 | local_progress_bar.clear() |
| 993 | global_progress_bar.clear() | 977 | global_progress_bar.clear() |
| 994 | 978 | ||
| 995 | if min_val_loss > val_loss: | 979 | if accelerator.is_main_process: |
| 996 | accelerator.print( | 980 | if min_val_loss > val_loss: |
| 997 | f"Global step {global_step}: Validation loss reached new minimum: {min_val_loss:.2e} -> {val_loss:.2e}") | 981 | accelerator.print( |
| 998 | checkpointer.checkpoint(global_step + global_step_offset, "milestone") | 982 | f"Global step {global_step}: Validation loss reached new minimum: {min_val_loss:.2e} -> {val_loss:.2e}") |
| 999 | min_val_loss = val_loss | 983 | checkpointer.checkpoint(global_step + global_step_offset, "milestone") |
| 984 | min_val_loss = val_loss | ||
| 985 | |||
| 986 | if epoch % args.checkpoint_frequency == 0: | ||
| 987 | checkpointer.checkpoint(global_step + global_step_offset, "training") | ||
| 988 | save_args(basepath, args, { | ||
| 989 | "global_step": global_step + global_step_offset | ||
| 990 | }) | ||
| 1000 | 991 | ||
| 1001 | if sample_checkpoint and accelerator.is_main_process: | 992 | if epoch % args.sample_frequency == 0: |
| 1002 | checkpointer.save_samples( | 993 | checkpointer.save_samples( |
| 1003 | global_step + global_step_offset, | 994 | global_step + global_step_offset, |
| 1004 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) | 995 | args.resolution, args.resolution, 7.5, 0.0, args.sample_steps) |
| 1005 | 996 | ||
| 1006 | # Create the pipeline using using the trained modules and save it. | 997 | # Create the pipeline using using the trained modules and save it. |
| 1007 | if accelerator.is_main_process: | 998 | if accelerator.is_main_process: |
| 1008 | print("Finished! Saving final checkpoint and resume state.") | 999 | print("Finished! Saving final checkpoint and resume state.") |
| 1009 | checkpointer.checkpoint(global_step + global_step_offset, "end") | 1000 | checkpointer.checkpoint(global_step + global_step_offset, "end") |
| 1010 | save_args(basepath, args, { | 1001 | save_args(basepath, args, { |
| 1011 | "global_step": global_step + global_step_offset, | 1002 | "global_step": global_step + global_step_offset |
| 1012 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
| 1013 | }) | 1003 | }) |
| 1014 | accelerator.end_training() | 1004 | accelerator.end_training() |
| 1015 | 1005 | ||
| @@ -1018,8 +1008,7 @@ def main(): | |||
| 1018 | print("Interrupted, saving checkpoint and resume state...") | 1008 | print("Interrupted, saving checkpoint and resume state...") |
| 1019 | checkpointer.checkpoint(global_step + global_step_offset, "end") | 1009 | checkpointer.checkpoint(global_step + global_step_offset, "end") |
| 1020 | save_args(basepath, args, { | 1010 | save_args(basepath, args, { |
| 1021 | "global_step": global_step + global_step_offset, | 1011 | "global_step": global_step + global_step_offset |
| 1022 | "resume_checkpoint": f"{basepath}/checkpoints/last.bin" | ||
| 1023 | }) | 1012 | }) |
| 1024 | accelerator.end_training() | 1013 | accelerator.end_training() |
| 1025 | quit() | 1014 | quit() |
