diff options
| author | Volpeon <git@volpeon.ink> | 2023-01-16 15:52:43 +0100 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2023-01-16 15:52:43 +0100 |
| commit | 6c8cffe28baeafac77d047ff3f8ded9418033e2f (patch) | |
| tree | 807c527deb1b15ef795f5cd8a7682151c69a037e /train_dreambooth.py | |
| parent | Pad dataset if len(items) < batch_size (diff) | |
| download | textual-inversion-diff-6c8cffe28baeafac77d047ff3f8ded9418033e2f.tar.gz textual-inversion-diff-6c8cffe28baeafac77d047ff3f8ded9418033e2f.tar.bz2 textual-inversion-diff-6c8cffe28baeafac77d047ff3f8ded9418033e2f.zip | |
More training adjustments
Diffstat (limited to 'train_dreambooth.py')
| -rw-r--r-- | train_dreambooth.py | 71 |
1 files changed, 59 insertions, 12 deletions
diff --git a/train_dreambooth.py b/train_dreambooth.py index a9fbbbd..1dc41b1 100644 --- a/train_dreambooth.py +++ b/train_dreambooth.py | |||
| @@ -55,6 +55,18 @@ def parse_args(): | |||
| 55 | default="template", | 55 | default="template", |
| 56 | ) | 56 | ) |
| 57 | parser.add_argument( | 57 | parser.add_argument( |
| 58 | "--train_set_pad", | ||
| 59 | type=int, | ||
| 60 | default=None, | ||
| 61 | help="The number to fill train dataset items up to." | ||
| 62 | ) | ||
| 63 | parser.add_argument( | ||
| 64 | "--valid_set_pad", | ||
| 65 | type=int, | ||
| 66 | default=None, | ||
| 67 | help="The number to fill validation dataset items up to." | ||
| 68 | ) | ||
| 69 | parser.add_argument( | ||
| 58 | "--project", | 70 | "--project", |
| 59 | type=str, | 71 | type=str, |
| 60 | default=None, | 72 | default=None, |
| @@ -188,11 +200,23 @@ def parse_args(): | |||
| 188 | default=100 | 200 | default=100 |
| 189 | ) | 201 | ) |
| 190 | parser.add_argument( | 202 | parser.add_argument( |
| 203 | "--ti_data_template", | ||
| 204 | type=str, | ||
| 205 | nargs='*', | ||
| 206 | default=[], | ||
| 207 | ) | ||
| 208 | parser.add_argument( | ||
| 191 | "--ti_num_train_epochs", | 209 | "--ti_num_train_epochs", |
| 192 | type=int, | 210 | type=int, |
| 193 | default=10 | 211 | default=10 |
| 194 | ) | 212 | ) |
| 195 | parser.add_argument( | 213 | parser.add_argument( |
| 214 | "--ti_batch_size", | ||
| 215 | type=int, | ||
| 216 | default=1, | ||
| 217 | help="Batch size (per device) for the training dataloader." | ||
| 218 | ) | ||
| 219 | parser.add_argument( | ||
| 196 | "--max_train_steps", | 220 | "--max_train_steps", |
| 197 | type=int, | 221 | type=int, |
| 198 | default=None, | 222 | default=None, |
| @@ -458,6 +482,12 @@ def parse_args(): | |||
| 458 | if len(args.placeholder_tokens) != len(args.num_vectors): | 482 | if len(args.placeholder_tokens) != len(args.num_vectors): |
| 459 | raise ValueError("--placeholder_tokens and --num_vectors must have the same number of items") | 483 | raise ValueError("--placeholder_tokens and --num_vectors must have the same number of items") |
| 460 | 484 | ||
| 485 | if isinstance(args.ti_data_template, str): | ||
| 486 | args.ti_data_template = [args.ti_data_template] | ||
| 487 | |||
| 488 | if len(args.ti_data_template) == 0: | ||
| 489 | raise ValueError("You must specify --ti_data_template") | ||
| 490 | |||
| 461 | if isinstance(args.collection, str): | 491 | if isinstance(args.collection, str): |
| 462 | args.collection = [args.collection] | 492 | args.collection = [args.collection] |
| 463 | 493 | ||
| @@ -491,6 +521,8 @@ def main(): | |||
| 491 | 521 | ||
| 492 | set_seed(args.seed) | 522 | set_seed(args.seed) |
| 493 | 523 | ||
| 524 | seed_generator = torch.Generator().manual_seed(args.seed) | ||
| 525 | |||
| 494 | save_args(output_dir, args) | 526 | save_args(output_dir, args) |
| 495 | 527 | ||
| 496 | tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings = get_models( | 528 | tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings = get_models( |
| @@ -512,6 +544,8 @@ def main(): | |||
| 512 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | 544 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): |
| 513 | raise ValueError("--embeddings_dir must point to an existing directory") | 545 | raise ValueError("--embeddings_dir must point to an existing directory") |
| 514 | 546 | ||
| 547 | embeddings.persist() | ||
| 548 | |||
| 515 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | 549 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) |
| 516 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | 550 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") |
| 517 | 551 | ||
| @@ -545,7 +579,6 @@ def main(): | |||
| 545 | vae=vae, | 579 | vae=vae, |
| 546 | noise_scheduler=noise_scheduler, | 580 | noise_scheduler=noise_scheduler, |
| 547 | dtype=weight_dtype, | 581 | dtype=weight_dtype, |
| 548 | seed=args.seed, | ||
| 549 | with_prior_preservation=args.num_class_images != 0, | 582 | with_prior_preservation=args.num_class_images != 0, |
| 550 | prior_loss_weight=args.prior_loss_weight, | 583 | prior_loss_weight=args.prior_loss_weight, |
| 551 | ) | 584 | ) |
| @@ -557,13 +590,17 @@ def main(): | |||
| 557 | cur_dir = output_dir.joinpath("1-ti") | 590 | cur_dir = output_dir.joinpath("1-ti") |
| 558 | cur_dir.mkdir(parents=True, exist_ok=True) | 591 | cur_dir.mkdir(parents=True, exist_ok=True) |
| 559 | 592 | ||
| 560 | for placeholder_token, initializer_token, num_vectors in zip(args.placeholder_tokens, args.initializer_tokens, args.num_vectors): | 593 | for i, placeholder_token, initializer_token, num_vectors, data_template in zip( |
| 561 | print(f"Phase 1.1: {placeholder_token} ({num_vectors}) ({initializer_token})") | 594 | range(len(args.placeholder_tokens)), |
| 562 | 595 | args.placeholder_tokens, | |
| 596 | args.initializer_tokens, | ||
| 597 | args.num_vectors, | ||
| 598 | args.ti_data_template | ||
| 599 | ): | ||
| 563 | cur_subdir = cur_dir.joinpath(placeholder_token) | 600 | cur_subdir = cur_dir.joinpath(placeholder_token) |
| 564 | cur_subdir.mkdir(parents=True, exist_ok=True) | 601 | cur_subdir.mkdir(parents=True, exist_ok=True) |
| 565 | 602 | ||
| 566 | placeholder_token_ids, _ = add_placeholder_tokens( | 603 | placeholder_token_ids, initializer_token_ids = add_placeholder_tokens( |
| 567 | tokenizer=tokenizer, | 604 | tokenizer=tokenizer, |
| 568 | embeddings=embeddings, | 605 | embeddings=embeddings, |
| 569 | placeholder_tokens=[placeholder_token], | 606 | placeholder_tokens=[placeholder_token], |
| @@ -571,17 +608,23 @@ def main(): | |||
| 571 | num_vectors=[num_vectors] | 608 | num_vectors=[num_vectors] |
| 572 | ) | 609 | ) |
| 573 | 610 | ||
| 611 | print( | ||
| 612 | f"Phase 1.{i + 1}: {placeholder_token}, {placeholder_token_ids[0]} ({initializer_token}, {initializer_token_ids[0]})") | ||
| 613 | |||
| 614 | args.seed = seed_generator.seed() | ||
| 615 | |||
| 574 | datamodule = VlpnDataModule( | 616 | datamodule = VlpnDataModule( |
| 575 | data_file=args.train_data_file, | 617 | data_file=args.train_data_file, |
| 576 | batch_size=args.train_batch_size, | 618 | batch_size=args.ti_batch_size, |
| 577 | tokenizer=tokenizer, | 619 | tokenizer=tokenizer, |
| 578 | class_subdir=args.class_image_dir, | 620 | class_subdir=args.class_image_dir, |
| 579 | num_class_images=args.num_class_images, | 621 | num_class_images=args.num_class_images, |
| 580 | size=args.resolution, | 622 | size=args.resolution, |
| 581 | shuffle=not args.no_tag_shuffle, | 623 | shuffle=not args.no_tag_shuffle, |
| 582 | template_key=args.train_data_template, | 624 | template_key=data_template, |
| 583 | valid_set_size=1, | 625 | valid_set_size=1, |
| 584 | valid_set_repeat=args.valid_set_repeat, | 626 | train_set_pad=args.train_set_pad, |
| 627 | valid_set_pad=args.valid_set_pad, | ||
| 585 | seed=args.seed, | 628 | seed=args.seed, |
| 586 | filter=partial(keyword_filter, [placeholder_token], args.collection, args.exclude_collections), | 629 | filter=partial(keyword_filter, [placeholder_token], args.collection, args.exclude_collections), |
| 587 | dtype=weight_dtype | 630 | dtype=weight_dtype |
| @@ -591,7 +634,9 @@ def main(): | |||
| 591 | optimizer = optimizer_class( | 634 | optimizer = optimizer_class( |
| 592 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | 635 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), |
| 593 | lr=args.ti_learning_rate, | 636 | lr=args.ti_learning_rate, |
| 637 | betas=(args.adam_beta1, args.adam_beta2), | ||
| 594 | weight_decay=0.0, | 638 | weight_decay=0.0, |
| 639 | eps=args.adam_epsilon, | ||
| 595 | ) | 640 | ) |
| 596 | 641 | ||
| 597 | lr_scheduler = get_scheduler( | 642 | lr_scheduler = get_scheduler( |
| @@ -600,7 +645,6 @@ def main(): | |||
| 600 | num_training_steps_per_epoch=len(datamodule.train_dataloader), | 645 | num_training_steps_per_epoch=len(datamodule.train_dataloader), |
| 601 | gradient_accumulation_steps=args.gradient_accumulation_steps, | 646 | gradient_accumulation_steps=args.gradient_accumulation_steps, |
| 602 | train_epochs=args.ti_num_train_epochs, | 647 | train_epochs=args.ti_num_train_epochs, |
| 603 | warmup_epochs=args.ti_num_train_epochs // 4, | ||
| 604 | ) | 648 | ) |
| 605 | 649 | ||
| 606 | trainer( | 650 | trainer( |
| @@ -608,10 +652,11 @@ def main(): | |||
| 608 | project="textual_inversion", | 652 | project="textual_inversion", |
| 609 | train_dataloader=datamodule.train_dataloader, | 653 | train_dataloader=datamodule.train_dataloader, |
| 610 | val_dataloader=datamodule.val_dataloader, | 654 | val_dataloader=datamodule.val_dataloader, |
| 655 | seed=args.seed, | ||
| 611 | optimizer=optimizer, | 656 | optimizer=optimizer, |
| 612 | lr_scheduler=lr_scheduler, | 657 | lr_scheduler=lr_scheduler, |
| 613 | num_train_epochs=args.ti_num_train_epochs, | 658 | num_train_epochs=args.ti_num_train_epochs, |
| 614 | sample_frequency=2, | 659 | sample_frequency=args.ti_num_train_epochs // 5, |
| 615 | checkpoint_frequency=9999999, | 660 | checkpoint_frequency=9999999, |
| 616 | # -- | 661 | # -- |
| 617 | tokenizer=tokenizer, | 662 | tokenizer=tokenizer, |
| @@ -637,7 +682,7 @@ def main(): | |||
| 637 | cur_dir = output_dir.joinpath("2-db") | 682 | cur_dir = output_dir.joinpath("2-db") |
| 638 | cur_dir.mkdir(parents=True, exist_ok=True) | 683 | cur_dir.mkdir(parents=True, exist_ok=True) |
| 639 | 684 | ||
| 640 | args.seed = (args.seed + 28635) >> 32 | 685 | args.seed = seed_generator.seed() |
| 641 | 686 | ||
| 642 | datamodule = VlpnDataModule( | 687 | datamodule = VlpnDataModule( |
| 643 | data_file=args.train_data_file, | 688 | data_file=args.train_data_file, |
| @@ -654,7 +699,8 @@ def main(): | |||
| 654 | shuffle=not args.no_tag_shuffle, | 699 | shuffle=not args.no_tag_shuffle, |
| 655 | template_key=args.train_data_template, | 700 | template_key=args.train_data_template, |
| 656 | valid_set_size=args.valid_set_size, | 701 | valid_set_size=args.valid_set_size, |
| 657 | valid_set_repeat=args.valid_set_repeat, | 702 | train_set_pad=args.train_set_pad, |
| 703 | valid_set_pad=args.valid_set_pad, | ||
| 658 | seed=args.seed, | 704 | seed=args.seed, |
| 659 | filter=partial(keyword_filter, None, args.collection, args.exclude_collections), | 705 | filter=partial(keyword_filter, None, args.collection, args.exclude_collections), |
| 660 | dtype=weight_dtype | 706 | dtype=weight_dtype |
| @@ -697,6 +743,7 @@ def main(): | |||
| 697 | project="dreambooth", | 743 | project="dreambooth", |
| 698 | train_dataloader=datamodule.train_dataloader, | 744 | train_dataloader=datamodule.train_dataloader, |
| 699 | val_dataloader=datamodule.val_dataloader, | 745 | val_dataloader=datamodule.val_dataloader, |
| 746 | seed=args.seed, | ||
| 700 | optimizer=optimizer, | 747 | optimizer=optimizer, |
| 701 | lr_scheduler=lr_scheduler, | 748 | lr_scheduler=lr_scheduler, |
| 702 | num_train_epochs=args.num_train_epochs, | 749 | num_train_epochs=args.num_train_epochs, |
