diff options
| author | Volpeon <git@volpeon.ink> | 2022-12-24 10:25:58 +0100 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2022-12-24 10:25:58 +0100 |
| commit | e09aaedd0e74f2fc6e2a53f233914803c65e127c (patch) | |
| tree | 186a6442cb4de3210837ca459aad81a22a3f37ee /train_dreambooth.py | |
| parent | Update (diff) | |
| download | textual-inversion-diff-e09aaedd0e74f2fc6e2a53f233914803c65e127c.tar.gz textual-inversion-diff-e09aaedd0e74f2fc6e2a53f233914803c65e127c.tar.bz2 textual-inversion-diff-e09aaedd0e74f2fc6e2a53f233914803c65e127c.zip | |
Training update
Diffstat (limited to 'train_dreambooth.py')
| -rw-r--r-- | train_dreambooth.py | 20 |
1 files changed, 4 insertions, 16 deletions
diff --git a/train_dreambooth.py b/train_dreambooth.py index c7899a0..51e881a 100644 --- a/train_dreambooth.py +++ b/train_dreambooth.py | |||
| @@ -24,6 +24,7 @@ from common import load_text_embeddings | |||
| 24 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 24 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 25 | from data.csv import CSVDataModule | 25 | from data.csv import CSVDataModule |
| 26 | from training.optimization import get_one_cycle_schedule | 26 | from training.optimization import get_one_cycle_schedule |
| 27 | from training.ti import patch_trainable_embeddings | ||
| 27 | from training.util import AverageMeter, CheckpointerBase, freeze_params, save_args | 28 | from training.util import AverageMeter, CheckpointerBase, freeze_params, save_args |
| 28 | from models.clip.prompt import PromptProcessor | 29 | from models.clip.prompt import PromptProcessor |
| 29 | 30 | ||
| @@ -567,15 +568,8 @@ def main(): | |||
| 567 | print(f"Training entire text encoder.") | 568 | print(f"Training entire text encoder.") |
| 568 | else: | 569 | else: |
| 569 | print(f"Training added text embeddings") | 570 | print(f"Training added text embeddings") |
| 570 | 571 | text_encoder.requires_grad_(False) | |
| 571 | freeze_params(itertools.chain( | 572 | patch_trainable_embeddings(text_encoder, placeholder_token_id) |
| 572 | text_encoder.text_model.encoder.parameters(), | ||
| 573 | text_encoder.text_model.final_layer_norm.parameters(), | ||
| 574 | text_encoder.text_model.embeddings.position_embedding.parameters(), | ||
| 575 | )) | ||
| 576 | |||
| 577 | index_fixed_tokens = torch.arange(len(tokenizer)) | ||
| 578 | index_fixed_tokens = index_fixed_tokens[~torch.isin(index_fixed_tokens, torch.tensor(placeholder_token_id))] | ||
| 579 | 573 | ||
| 580 | prompt_processor = PromptProcessor(tokenizer, text_encoder) | 574 | prompt_processor = PromptProcessor(tokenizer, text_encoder) |
| 581 | 575 | ||
| @@ -603,7 +597,7 @@ def main(): | |||
| 603 | if args.train_text_encoder: | 597 | if args.train_text_encoder: |
| 604 | text_encoder_params_to_optimize = text_encoder.parameters() | 598 | text_encoder_params_to_optimize = text_encoder.parameters() |
| 605 | else: | 599 | else: |
| 606 | text_encoder_params_to_optimize = text_encoder.get_input_embeddings().parameters() | 600 | text_encoder_params_to_optimize = text_encoder.text_model.embeddings.trainable_embedding.parameters() |
| 607 | 601 | ||
| 608 | # Initialize the optimizer | 602 | # Initialize the optimizer |
| 609 | optimizer = optimizer_class( | 603 | optimizer = optimizer_class( |
| @@ -914,12 +908,6 @@ def main(): | |||
| 914 | ema_unet.step(unet) | 908 | ema_unet.step(unet) |
| 915 | optimizer.zero_grad(set_to_none=True) | 909 | optimizer.zero_grad(set_to_none=True) |
| 916 | 910 | ||
| 917 | if not args.train_text_encoder: | ||
| 918 | # Let's make sure we don't update any embedding weights besides the newly added token | ||
| 919 | with torch.no_grad(): | ||
| 920 | text_encoder.get_input_embeddings( | ||
| 921 | ).weight[index_fixed_tokens] = original_token_embeds[index_fixed_tokens] | ||
| 922 | |||
| 923 | avg_loss.update(loss.detach_(), bsz) | 911 | avg_loss.update(loss.detach_(), bsz) |
| 924 | avg_acc.update(acc.detach_(), bsz) | 912 | avg_acc.update(acc.detach_(), bsz) |
| 925 | 913 | ||
