diff options
| author | Volpeon <git@volpeon.ink> | 2023-01-15 09:25:30 +0100 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2023-01-15 09:25:30 +0100 |
| commit | 5b9a3de142e7a645573b4f4a8c1ce9c59746ab08 (patch) | |
| tree | c551bd9a3f2f85f7aeb1e7f4bd3b2ebd0cb20450 /train_ti.py | |
| parent | Update (diff) | |
| download | textual-inversion-diff-5b9a3de142e7a645573b4f4a8c1ce9c59746ab08.tar.gz textual-inversion-diff-5b9a3de142e7a645573b4f4a8c1ce9c59746ab08.tar.bz2 textual-inversion-diff-5b9a3de142e7a645573b4f4a8c1ce9c59746ab08.zip | |
Added functional trainer
Diffstat (limited to 'train_ti.py')
| -rw-r--r-- | train_ti.py | 49 |
1 files changed, 23 insertions, 26 deletions
diff --git a/train_ti.py b/train_ti.py index 78c1b5c..97e4e72 100644 --- a/train_ti.py +++ b/train_ti.py | |||
| @@ -17,7 +17,7 @@ from slugify import slugify | |||
| 17 | from util import load_config, load_embeddings_from_dir | 17 | from util import load_config, load_embeddings_from_dir |
| 18 | from data.csv import VlpnDataModule, VlpnDataItem | 18 | from data.csv import VlpnDataModule, VlpnDataItem |
| 19 | from trainer_old.base import Checkpointer | 19 | from trainer_old.base import Checkpointer |
| 20 | from training.functional import loss_step, train_loop, generate_class_images, add_placeholder_tokens, get_models | 20 | from training.functional import train, loss_step, train_loop, generate_class_images, add_placeholder_tokens, get_models |
| 21 | from training.optimization import get_scheduler | 21 | from training.optimization import get_scheduler |
| 22 | from training.lr import LRFinder | 22 | from training.lr import LRFinder |
| 23 | from training.util import EMAModel, save_args | 23 | from training.util import EMAModel, save_args |
| @@ -703,17 +703,27 @@ def main(): | |||
| 703 | warmup_epochs=args.lr_warmup_epochs, | 703 | warmup_epochs=args.lr_warmup_epochs, |
| 704 | ) | 704 | ) |
| 705 | 705 | ||
| 706 | unet, text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 707 | unet, text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
| 708 | ) | ||
| 709 | |||
| 710 | vae.to(accelerator.device, dtype=weight_dtype) | ||
| 711 | |||
| 712 | if args.use_ema: | 706 | if args.use_ema: |
| 713 | ema_embeddings.to(accelerator.device) | 707 | ema_embeddings.to(accelerator.device) |
| 714 | 708 | ||
| 715 | if args.gradient_checkpointing: | 709 | trainer = partial( |
| 716 | unet.train() | 710 | train, |
| 711 | accelerator=accelerator, | ||
| 712 | vae=vae, | ||
| 713 | unet=unet, | ||
| 714 | text_encoder=text_encoder, | ||
| 715 | noise_scheduler=noise_scheduler, | ||
| 716 | train_dataloader=train_dataloader, | ||
| 717 | val_dataloader=val_dataloader, | ||
| 718 | dtype=weight_dtype, | ||
| 719 | seed=args.seed, | ||
| 720 | ) | ||
| 721 | |||
| 722 | def on_prepare(): | ||
| 723 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) | ||
| 724 | |||
| 725 | if args.gradient_checkpointing: | ||
| 726 | unet.train() | ||
| 717 | 727 | ||
| 718 | @contextmanager | 728 | @contextmanager |
| 719 | def on_train(epoch: int): | 729 | def on_train(epoch: int): |
| @@ -752,16 +762,6 @@ def main(): | |||
| 752 | return {"ema_decay": ema_embeddings.decay} | 762 | return {"ema_decay": ema_embeddings.decay} |
| 753 | return {} | 763 | return {} |
| 754 | 764 | ||
| 755 | loss_step_ = partial( | ||
| 756 | loss_step, | ||
| 757 | vae, | ||
| 758 | noise_scheduler, | ||
| 759 | unet, | ||
| 760 | text_encoder, | ||
| 761 | args.prior_loss_weight, | ||
| 762 | args.seed, | ||
| 763 | ) | ||
| 764 | |||
| 765 | checkpointer = TextualInversionCheckpointer( | 765 | checkpointer = TextualInversionCheckpointer( |
| 766 | dtype=weight_dtype, | 766 | dtype=weight_dtype, |
| 767 | train_dataloader=train_dataloader, | 767 | train_dataloader=train_dataloader, |
| @@ -803,18 +803,15 @@ def main(): | |||
| 803 | plt.savefig(output_dir.joinpath("lr.png"), dpi=300) | 803 | plt.savefig(output_dir.joinpath("lr.png"), dpi=300) |
| 804 | plt.close() | 804 | plt.close() |
| 805 | else: | 805 | else: |
| 806 | train_loop( | 806 | trainer( |
| 807 | accelerator=accelerator, | ||
| 808 | optimizer=optimizer, | 807 | optimizer=optimizer, |
| 809 | lr_scheduler=lr_scheduler, | 808 | lr_scheduler=lr_scheduler, |
| 810 | model=text_encoder, | 809 | num_train_epochs=args.num_train_epochs, |
| 811 | train_dataloader=train_dataloader, | ||
| 812 | val_dataloader=val_dataloader, | ||
| 813 | loss_step=loss_step_, | ||
| 814 | sample_frequency=args.sample_frequency, | 810 | sample_frequency=args.sample_frequency, |
| 815 | checkpoint_frequency=args.checkpoint_frequency, | 811 | checkpoint_frequency=args.checkpoint_frequency, |
| 816 | global_step_offset=global_step_offset, | 812 | global_step_offset=global_step_offset, |
| 817 | num_epochs=args.num_train_epochs, | 813 | prior_loss_weight=args.prior_loss_weight, |
| 814 | on_prepare=on_prepare, | ||
| 818 | on_log=on_log, | 815 | on_log=on_log, |
| 819 | on_train=on_train, | 816 | on_train=on_train, |
| 820 | on_after_optimize=on_after_optimize, | 817 | on_after_optimize=on_after_optimize, |
